Making use of respondent reported processing information to understand attribute importance: A latent variable scaling approach
Access status:
Open Access
Type
Working PaperAbstract
In recent years we have seen an explosion of research seeking to understand the role that rules and heuristics might play in improving the predictive capability of discrete choice models, as well as delivering willingness to pay estimates for specific attributes that may (and often ...
See moreIn recent years we have seen an explosion of research seeking to understand the role that rules and heuristics might play in improving the predictive capability of discrete choice models, as well as delivering willingness to pay estimates for specific attributes that may (and often do) differ significantly from estimates based on a model specification that assumes all attributes are relevant. This paper adds to that literature in one important way - it explicitly recognises the endogeneity induced by attribute non-attendance and conditions attribute parameters on underlying unobserved attribute importance ratings. We develop a hybrid model system involving attribute processing and outcome choice models in which latent variables are introduced as explanatory variables in both parts of the model, explaining the answers to attribute processing questions and explaining heterogeneity in marginal sensitivities in the choice model. The resulting empirical model explains how lower latent attribute importance leads to a higher probability of indicating that an attribute was ignored or that it was ranked as less important, as well as increasing the probability of a reduced value for the associated marginal utility coefficient in the choice model. The model does so by treating the answers to information processing questions as dependent rather than explanatory variables, hence avoiding potential risk of endogeneity bias and measurement error.
See less
See moreIn recent years we have seen an explosion of research seeking to understand the role that rules and heuristics might play in improving the predictive capability of discrete choice models, as well as delivering willingness to pay estimates for specific attributes that may (and often do) differ significantly from estimates based on a model specification that assumes all attributes are relevant. This paper adds to that literature in one important way - it explicitly recognises the endogeneity induced by attribute non-attendance and conditions attribute parameters on underlying unobserved attribute importance ratings. We develop a hybrid model system involving attribute processing and outcome choice models in which latent variables are introduced as explanatory variables in both parts of the model, explaining the answers to attribute processing questions and explaining heterogeneity in marginal sensitivities in the choice model. The resulting empirical model explains how lower latent attribute importance leads to a higher probability of indicating that an attribute was ignored or that it was ranked as less important, as well as increasing the probability of a reduced value for the associated marginal utility coefficient in the choice model. The model does so by treating the answers to information processing questions as dependent rather than explanatory variables, hence avoiding potential risk of endogeneity bias and measurement error.
See less
Date
2012-01-01Department, Discipline or Centre
ITLSShare