Show simple item record

FieldValueLanguage
dc.contributor.authorCheng, Yen Theng
dc.contributor.authorXia, Qingbo
dc.contributor.authorLiu, Hongwei
dc.contributor.authorSolomon, Marcello
dc.contributor.authorBrisson, Emma
dc.contributor.authorBlackman, Lewis
dc.contributor.authorLing, Chris
dc.contributor.authorMuellner, Markus
dc.date.accessioned2024-07-11T04:16:26Z
dc.date.available2024-07-11T04:16:26Z
dc.date.issued2023en_AU
dc.identifier.urihttps://hdl.handle.net/2123/32783
dc.description.abstractWe demonstrate a modular synthesis approach to yield mesoporous carbon-coated anatase (denoted as TiO2/C) nanostructures. Combining polymerization-induced self-assembly (PISA) and reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization enabled the fabrication of uniform core–shell polymeric nanoreactors with tunable morphologies. The nanoreactors comprised of a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) shell and a poly(benzyl methacrylate) (PBzMA) core. We selected worm-like and vesicular morphologies to guide the nanostructuring of a TiO2 precursor, namely, titanium(IV) bis(ammonium lactato)dihydroxide (TALH). Subsequent carbonization yielded nanocrystalline anatase and simultaneously introduced a porous carbon framework, which also suppressed the crystal growth (∼5 nm crystallites). The as-prepared TiO2/C materials comprised of a porous structure, with large specific surface areas (>85 m2/g) and various carbon contents (20–30 wt %). As anode components in lithium-ion batteries, our TiO2/C nanomaterials improved the cycling stability, facilitated high overall capacities, and minimized the capacity loss compared to both their sans carbon and commercial anatase analogues.en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.relation.ispartofACS Applied Materials & Interfacesen_AU
dc.subjectRAFT polymerizationen_AU
dc.subjectblock copolymersen_AU
dc.subjectpolymer templatingen_AU
dc.subjectnanocrystalline TiO2en_AU
dc.subjectnanocompositesen_AU
dc.titleTunable Polymer Nanoreactors from RAFT Polymerization-Induced Self-Assembly: Fabrication of Nanostructured Carbon-Coated Anatase as Battery Anode Materials with Variable Morphology and Porosityen_AU
dc.typeArticleen_AU
dc.subject.asrcANZSRC FoR code::34 CHEMICAL SCIENCESen_AU
dc.identifier.doi10.1021/acsami.2c18928
dc.type.pubtypeAuthor accepted manuscripten_AU
dc.relation.arcFT200100185
dc.relation.arcDP200100959
dc.rights.other“This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, Copyright © 2023 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.2c18928”en_AU
usyd.facultySeS faculties schools::Faculty of Science::School of Chemistryen_AU
usyd.citation.volume15en_AU
usyd.citation.issue9en_AU
usyd.citation.spage12261en_AU
usyd.citation.epage12272en_AU
workflow.metadata.onlyNoen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.