Cation and lone pair order-disorder in the polymorphic mixed metal bismuth scheelite Bi3FeMo2O12
Access status:
Open Access
Type
ArticleAuthor/s
Saura-Múzquiz, MatildeMarlton, Frederick
Mullens, Bryce
Liu, Jiatu
Maynard-Casely, Helen Elizabeth
Avdeev, Maxim
Blom, Douglas A.
Vogt, Thomas
Kennedy, Brendan James
Abstract
The Bi3FeMo2O12 system is examined as a rare example of a transition metal oxide which, upon heating, undergoes a symmetry lowering and 2:1 ordering of the transition metal cations. The compound was synthesised in the tetragonal scheelite structure (S.G. #88: I41/a) by a sol-gel ...
See moreThe Bi3FeMo2O12 system is examined as a rare example of a transition metal oxide which, upon heating, undergoes a symmetry lowering and 2:1 ordering of the transition metal cations. The compound was synthesised in the tetragonal scheelite structure (S.G. #88: I41/a) by a sol-gel method and converted into the monoclinic polymorph (S.G. #15: C2/c) by calcination above 500 °C. The structure of both polymorphs was analysed using a combination of X-ray and neutron diffraction data, and the temperature-dependent phase transition between these was investigated in situ using variable temperature neutron powder diffraction and scanning transmission electron microscopy. The results show that the structural phase transition takes place at low temperature (~500 °C) and is 1st order in nature, as evident from the coexistence of both structures. The transition from tetragonal to monoclinic results in reduction of the equivalent unit cell volume. The role of the Bi3+ 6s lone pairs in the temperature-driven phase transition has been studied using neutron pair distribution function analysis. Local structure analysis via neutron total scattering revealed the Bi3+ 6s lone pairs to be stereochemically active in both structures, with short correlation lengths in the tetragonal structure and long correlation lengths in the monoclinic structure, leading to the facile phase conversion and to a more efficient packing density with highly correlated lone pairs in the monoclinic structure. Magnetization isotherms of the tetragonal structure collected at 1.8 K exhibit ferromagnetic behavior, suggesting that the interplay between the observed short-range monoclinic order, defects and surface-to-bulk effects alters the magnetic interaction, leading to short range ferromagnetic interactions, which is highly unexpected given the low temperature antiferromagnetic order observed in the monoclinic structure.
See less
See moreThe Bi3FeMo2O12 system is examined as a rare example of a transition metal oxide which, upon heating, undergoes a symmetry lowering and 2:1 ordering of the transition metal cations. The compound was synthesised in the tetragonal scheelite structure (S.G. #88: I41/a) by a sol-gel method and converted into the monoclinic polymorph (S.G. #15: C2/c) by calcination above 500 °C. The structure of both polymorphs was analysed using a combination of X-ray and neutron diffraction data, and the temperature-dependent phase transition between these was investigated in situ using variable temperature neutron powder diffraction and scanning transmission electron microscopy. The results show that the structural phase transition takes place at low temperature (~500 °C) and is 1st order in nature, as evident from the coexistence of both structures. The transition from tetragonal to monoclinic results in reduction of the equivalent unit cell volume. The role of the Bi3+ 6s lone pairs in the temperature-driven phase transition has been studied using neutron pair distribution function analysis. Local structure analysis via neutron total scattering revealed the Bi3+ 6s lone pairs to be stereochemically active in both structures, with short correlation lengths in the tetragonal structure and long correlation lengths in the monoclinic structure, leading to the facile phase conversion and to a more efficient packing density with highly correlated lone pairs in the monoclinic structure. Magnetization isotherms of the tetragonal structure collected at 1.8 K exhibit ferromagnetic behavior, suggesting that the interplay between the observed short-range monoclinic order, defects and surface-to-bulk effects alters the magnetic interaction, leading to short range ferromagnetic interactions, which is highly unexpected given the low temperature antiferromagnetic order observed in the monoclinic structure.
See less
Date
2022Source title
Chemistry of MaterialsVolume
35Publisher
ACSFaculty/School
Faculty of Science, School of ChemistryShare