Show simple item record

FieldValueLanguage
dc.contributor.authorBarpanda, P
dc.contributor.authorOyama, G
dc.contributor.authorLing, Chris D
dc.contributor.authorYamada, A
dc.date.accessioned2022-07-28T23:52:52Z
dc.date.available2022-07-28T23:52:52Z
dc.date.issued2014en_AU
dc.identifier.urihttps://hdl.handle.net/2123/29345
dc.description.abstractSolid-state sulfate chemistry continues to yield promising high-voltage polyanionic cathode materials for rechargeable batter-ies (cf. fluorosulfates and bisulfates). As part of our ongoing exploration of new sulfate chemistry, here we report a new can-didate cathode material for sodium-ion batteries, Na2Fe(SO4)2.2H2O. Prepared by conventional low temperature (ca. 80 °C) dissolution and precipitation route, it stabilizes in a monoclinic unit cell with P21/c (#14) symmetry, isostructural to the mineral kröhnkite. Its crystal structure has refined against synchrotron X-ray diffraction. This bihydrated compound demon-strates reversible Na (de)insertion with a capacity exceeding 70 mAh/g, involving Fe3+/Fe2+ redox activity centered at 3.25 V (vs. Na/Na+). The synthetic, structural and electrochemical details of this new low-cost insertion compound are presented.en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.relation.ispartofChemistry of Materialsen_AU
dc.titleKröhnkite-type Na2Fe(SO4)2.2H2O as a novel 3.3 V insertion compound for Na-ion batteriesen_AU
dc.typeArticleen_AU
dc.subject.asrc0302 Inorganic Chemistryen_AU
dc.identifier.doi10.1021/cm4033226
dc.type.pubtypeAuthor accepted manuscripten_AU
dc.relation.arcDP110102662
usyd.facultySeS faculties schools::Faculty of Science::School of Chemistryen_AU
usyd.citation.volume26en_AU
usyd.citation.spage1297en_AU
usyd.citation.epage1299en_AU
workflow.metadata.onlyNoen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.