Show simple item record

FieldValueLanguage
dc.contributor.authorSpooner, Michael J.
dc.contributor.authorLi, Hongyu
dc.contributor.authorMarques, Igor
dc.contributor.authorCosta, Pedro M.R.
dc.contributor.authorWu, Xin
dc.contributor.authorHowe, Ethan N.W.
dc.contributor.authorBusschaert, Nathalie
dc.contributor.authorMoore, Stephen J.
dc.contributor.authorLight, Mark E.
dc.contributor.authorSheppard, David N.
dc.contributor.authorGale, Philip A.
dc.date.accessioned2019-02-07
dc.date.available2019-02-07
dc.date.issued2018-01-01
dc.identifier.citationM. J. Spooner, H. Li, I. Marques, P. M. R. Costa, X. Wu, E. N. W. Howe, N. Busschaert, S. J. Moore, M. E. Light, D. N. Sheppard, V. Félix and P. A. Gale, Chem. Sci., 2019, Advance Article , DOI: 10.1039/C8SC05155Ken_AU
dc.identifier.urihttp://hdl.handle.net/2123/19949
dc.description.abstractA series of fluorinated tripodal tris-thioureas function as highly active anion transporters across lipid bilayers and cell membranes. Here, we investigate their mechanism of action using anion transport assays in cells and synthetic vesicles and molecular modelling of transporter–lipid interactions. When compared with non-fluorinated analogues, fluorinated compounds demonstrate a different mechanism of membrane transport because the free transporter cannot effectively diffuse through the membrane. As a result, in H+/Cl cotransport assays, fluorinated transporters require the presence of oleic acid to form anionic oleate complexes for recycling of the transporter, whereas non-fluorinated analogues readily diffuse through the membrane as free transporters and show synergistic transport with the proton transporter gramicidin. Molecular dynamics simulations revealed markedly stronger transporter–lipid interactions for fluorinated compounds compared with non-fluorinated analogues and hence, higher energy barriers for fluorinated compounds to cross the membrane as free transporters. With use of appropriate proton transporters to ensure measurement of the correct rate-limiting steps, the transport rates determined in synthetic vesicle assays show excellent agreement with the anion transport rates determined in cell- based assays. We conclude that integration of computational and experimental methods provides a strategy to optimise transmembrane anion transporter design for biomedical applications.en_AU
dc.description.sponsorshipARC, EPSRC, FCT, CICECOen_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.relationARC DP180100612en_AU
dc.rightsCC BY 3.0 Unported Licenceen_AU
dc.subjectchemistryen_AU
dc.subjectsupramolecular chemistryen_AU
dc.titleFluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transporten_AU
dc.typeArticleen_AU
dc.subject.asrc030302en_AU
dc.identifier.doi10.1039/c8sc05155k
dc.type.pubtypePublisher's versionen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.