Show simple item record

FieldValueLanguage
dc.contributor.authorYue, Xiao-Guangen_AU
dc.contributor.authorShao, Xue-Fengen_AU
dc.contributor.authorLi, Rita Yi Manen_AU
dc.contributor.authorCrabbe, M. James C.en_AU
dc.contributor.authorMi, Lilien_AU
dc.contributor.authorHu, Siyanen_AU
dc.contributor.authorBaker, Julien Sen_AU
dc.contributor.authorLiu, Litingen_AU
dc.contributor.authorDong, Kechenen_AU
dc.date.accessioned2020-05-27
dc.date.available2020-05-27
dc.date.issued2020en_AU
dc.identifier.urihttps://hdl.handle.net/2123/22408
dc.description.abstractThis study first analyzes the national and global infection status of the Coronavirus Disease that emerged in 2019 (COVID-19). It then uses the trend comparison method to predict the inflection point and Key Point of the COVID-19 virus by comparison with the severe acute respiratory syndrome (SARS) graphs, followed by using the Autoregressive Integrated Moving Average model, Autoregressive Moving Average model, Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors, and Holt Winter’s Exponential Smoothing to predict infections, deaths, and GDP in China. Finally, it discusses and assesses the impact of these results. This study argues that even if the risks and impacts of the epidemic are significant, China’s economy will continue to maintain steady development.en_AU
dc.language.isoenen_AU
dc.subjectCOVID-19en_AU
dc.subjectCoronavirusen_AU
dc.titleRisk Prediction and Assessment: Duration, Infections, and Death Toll of the COVID-19 and Its Impact on China's Economyen_AU
dc.typeArticleen_AU
dc.identifier.doi10.3390/jrfm13040066


Show simple item record

Associated file/s

There are no files associated with this item.

Associated collections

Show simple item record

There are no previous versions of the item available.