The Mixed Logit Model: The State of Practice
Access status:
Open Access
Type
Working PaperAbstract
The mixed logit model is considered to be the most promising state of the art discrete choice model currently available. Increasingly researchers and practitioners are estimating mixed logit models of various degrees of sophistication with mixtures of revealed preference and stated ...
See moreThe mixed logit model is considered to be the most promising state of the art discrete choice model currently available. Increasingly researchers and practitioners are estimating mixed logit models of various degrees of sophistication with mixtures of revealed preference and stated choice data. It is timely to review progress in model estimation since the learning curve is steep and the unwary are likely to fall into a chasm if not careful. These chasms are very deep indeed given the complexity of the mixed logit model. Although the theory is relatively clear, estimation and data issues are far from clear. Indeed there is a great deal of potential mis-inference consequent on trying to extract increased behavioural realism from data that are often not able to comply with the demands of mixed logit models. Possibly for the first time we now have an estimation method that requires extremely high quality data if the analyst wishes to take advantage of the extended behavioural capabilities of such models. This paper focuses on the new opportunities offered by mixed logit models and some issues to be aware of to avoid misuse of such advanced discrete choice methods by the practitioner.
See less
See moreThe mixed logit model is considered to be the most promising state of the art discrete choice model currently available. Increasingly researchers and practitioners are estimating mixed logit models of various degrees of sophistication with mixtures of revealed preference and stated choice data. It is timely to review progress in model estimation since the learning curve is steep and the unwary are likely to fall into a chasm if not careful. These chasms are very deep indeed given the complexity of the mixed logit model. Although the theory is relatively clear, estimation and data issues are far from clear. Indeed there is a great deal of potential mis-inference consequent on trying to extract increased behavioural realism from data that are often not able to comply with the demands of mixed logit models. Possibly for the first time we now have an estimation method that requires extremely high quality data if the analyst wishes to take advantage of the extended behavioural capabilities of such models. This paper focuses on the new opportunities offered by mixed logit models and some issues to be aware of to avoid misuse of such advanced discrete choice methods by the practitioner.
See less
Date
2002-01-01Department, Discipline or Centre
ITLSShare