Show simple item record

FieldValueLanguage
dc.contributor.authorDuistermaat, Johannes (Hans) J.
dc.contributor.authorJoshi, Nalini
dc.date.accessioned2012-06-22
dc.date.available2012-06-22
dc.date.issued2011-01-01
dc.identifier.citationDuistermaat JJ and Joshi N (2011) Okamoto's Space for the First Painlevé Equation in Boutroux Coordinates. Archive for Rational Mechanics and Analysis, 202(3), 707–785.en_AU
dc.identifier.urihttp://hdl.handle.net/2123/8422
dc.description.abstractWe study the completeness and connectedness of asymptotic behaviours of solutions of the first Painlev ́e equation d^2 y/ dx^2 = 6 y^2 + x, in the limit x → ∞, x ∈ C. This problem arises in various physical contexts including the critical behaviour near gradient catastrophe for the focusing nonlinear Schrodinger equation. We prove that the complex limit set of solutions is non-empty, compact and invariant under the flow of the limiting autonomous Hamiltonian system, that the infinity set of the vector field is a repellor for the dynamics and obtain new proofs for solutions near the equilibrium points of the autonomous flow. The results rely on a realization of Okamoto’s space, i.e., the space of initial values compactified and regularized by embedding in CP2 through an explicit construction of nine blow-ups.en_AU
dc.description.sponsorshipAustralian Research Council; KNAWen_AU
dc.language.isoenen_AU
dc.publisherSpringeren_AU
dc.rightsThe original publication is available at www.springerlink.com.en_AU
dc.subjectAsymptoticsen_AU
dc.subjectInitial-value spaceen_AU
dc.subjectThe first Painlevé equationen_AU
dc.subjectIntegrable Systemsen_AU
dc.titleOkamoto's space for the first Painlevé equation in Boutroux coordinatesen_AU
dc.typeArticleen_AU
dc.subject.asrc010502en_AU
dc.subject.asrc010201en_AU
dc.subject.asrc010109en_AU
dc.identifier.doi10.1007/s00205-011-0437-8
dc.type.pubtypePost-printen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.