Show simple item record

FieldValueLanguage
dc.contributor.authorEo, Yunjong
dc.date.accessioned2012-03-01
dc.date.available2012-03-01
dc.date.issued2012-02-01
dc.identifier.urihttp://hdl.handle.net/2123/8149
dc.description.abstractI propose a Bayesian approach to making an inference about complicated patterns of structural breaks in time series. Structural break models in the literature are mainly considered for a simple case in which all the parameters under the structural changes are restricted to have breaks at the same dates. Unlike the existing literature, the proposed method in this paper allows multiple parameters such as intercept, persistence, and/or residual variance to undergo mutually independent structural breaks at different dates with the different number of breaks across parameters. To estimate the complex structural break models considered in this paper, structural breaks in the multiple parameters are interpreted as regime transitions as in Chib (1998). The regime for each parameter is then indicated by a corresponding discrete latent variable which follows a first-order Markov process. A Markov-chain Monte Carlo scheme is developed to estimate and compare the complex structural break models, which are potentially non-nested, in an efficient and tractable way. I apply this approach to postwar U.S. inflation and find strong support for an autoregressive model with two structural breaks in residual variance and no break in intercept and persistence.en_AU
dc.language.isoen_AUen_AU
dc.publisherSchool of Economicsen_AU
dc.relation.ispartofseries2012-05en_AU
dc.subjectBayesian Analysisen_AU
dc.subjectStructural Breaksen_AU
dc.subjectMultiple-Parameter Change-pointen_AU
dc.subjectInflation Dynamicsen_AU
dc.titleBayesian Inference about the Types of Structural Breaks When There are Many Breaksen_AU
dc.typeWorking Paperen_AU
dc.contributor.departmentSchool of Economicsen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.