Please use this identifier to cite or link to this item:
http://hdl.handle.net/2123/720
Title: | Cellularity of Twisted Semigroup Algebras of Regular Semigroups |
Authors: | Wilcox, Stewart |
Keywords: | twisted semigroup algebra;cellular;diagram algebra |
Issue Date: | 2005 |
Publisher: | University of Sydney. Mathematics and Statistics |
Abstract: | There has been much interest in algebras which have a basis consisting of diagrams, which are multiplied in some natural diagrammatic way. Examples of these so-called diagram algebras include the partition, Brauer and Temperley-Lieb algebras. These three examples all have the property that the product of two diagram basis elements is always a scalar multiple of another basis element. Motivated by this observation, we find that these algebras are examples of twisted semigroup algebras. Such algebras are an obvious extension of twisted group algebras, which arise naturally in various contexts; examples include the complex numbers and the quaternions, considered as algebras over the real numbers. The concept of a cellular algebra was introduced in a famous paper of Graham and Lehrer; an algebra is called cellular if it has a basis of a certain form, in which case the general theory of cellular algebras allows us to easily derive information about the semisimplicity of the algebra and about its representation theory, even in the non-semisimple case. Many diagram algebras (including the above three examples) are known to be cellular. The aim of this thesis is to deduce the cellularity of these examples (and others) by proving a general result about the cellularity of twisted semigroup algebras. This will extend a recent result of East. In Chapters 2 and 3 we discuss semigroup theory and twisted semigroup algebras, and realise the above three examples as twisted semigroup algebras. Chapters 4 to 7 detail and extend slightly the theory of cellular algebras. In Chapter 8 we state and prove the main theorem, which shows that certain twisted semigroup algebras are cellular. Under the assumptions of the main theorem, we explore the cell representations of twisted semigroup algebras in Chapter 9. Finally in Chapter 10, we apply the theorem to various examples, including the three diagram algebras mentioned above. |
URI: | http://hdl.handle.net/2123/720 |
Rights and Permissions: | Copyright Wilcox, Stewart;http://www.library.usyd.edu.au/copyright.html |
Appears in Collections: | Sydney Digital Theses (Open Access)
|
This work is protected by Copyright. All rights reserved. Access to this work is provided for the purposes of personal research and study. Except where permitted under the Copyright Act 1968, this work must not be copied or communicated to others without the express permission of the copyright owner. Use the persistent URI in this record to enable others to access this work.
Items in Sydney eScholarship Repository are protected by copyright, with all rights reserved, unless otherwise indicated.