Automated Multi-Stage Segmentation of White Blood Cells Via Optimizing Color Processing
Access status:
Open Access
Type
Conference paperAbstract
Segmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images
analysis of peripheral blood smears due to the complex nature of the different types of white blood cells and their
large variations in shape, texture, color, and ...
See moreSegmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images analysis of peripheral blood smears due to the complex nature of the different types of white blood cells and their large variations in shape, texture, color, and density. This study addresses this issue and presents a single fully automatic segmentation framework for both nuclei and cytoplasm of the five classes of leukocytes in a microscope blood smears. The proposed framework integrates a priori information of enhanced nuclei color with Gram-Schmidt orthogonalization, and multi-scale morphological enhancement to localize the nuclei, whereas clustering-based seed extraction and watershed are utilized to segment the cytoplasm. The experimental results on two different datasets show that the proposed method works successfully for both nuclei and cytoplasm segmentation, and achieves more accurate segmentation results compared to the other methods in the literature.
See less
See moreSegmentation of white blood cells (i.e. leukocytes) is a crucial step toward the development of haematological images analysis of peripheral blood smears due to the complex nature of the different types of white blood cells and their large variations in shape, texture, color, and density. This study addresses this issue and presents a single fully automatic segmentation framework for both nuclei and cytoplasm of the five classes of leukocytes in a microscope blood smears. The proposed framework integrates a priori information of enhanced nuclei color with Gram-Schmidt orthogonalization, and multi-scale morphological enhancement to localize the nuclei, whereas clustering-based seed extraction and watershed are utilized to segment the cytoplasm. The experimental results on two different datasets show that the proposed method works successfully for both nuclei and cytoplasm segmentation, and achieves more accurate segmentation results compared to the other methods in the literature.
See less
Date
2017Source title
Proceedings of 2017 International Symposium on Biomedical Imaging (ISBI 2017)Publisher
IEEEFunding information
ARC DP170104304Licence
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Faculty/School
Faculty of EngineeringShare