Show simple item record

FieldValueLanguage
dc.contributor.authorTam, Kevin K. K.
dc.contributor.authorAlexander, Tristram J.
dc.contributor.authorBlanco Redondo, Andrea
dc.contributor.authorde Sterke, C. Martijn
dc.date.accessioned2022-09-05T05:08:18Z
dc.date.available2022-09-05T05:08:18Z
dc.date.issued2019en_AU
dc.identifier.urihttps://hdl.handle.net/2123/29501
dc.description.abstractWe numerically solve a generalized nonlinear Schrödinger equation and find a family of pure-quartic solitons, existing through a balance of positive Kerr nonlinearity and negative quartic dispersion. These solitons have oscillatory tails, which can be understood analytically from the properties of linear waves with quartic dispersion. By computing the linear eigenspectrum of the solitons, we show that they are stable, but that they possess a nontrivial internal mode close to the radiation continuum. We also demonstrate evolution into a pure-quartic soliton from Gaussian initial conditions. The energy-width scaling of pure-quartic solitons differs strongly from that for conventional solitons, opening possibilities for pure-quartic soliton lasers.en_AU
dc.language.isoenen_AU
dc.publisherOpticaen_AU
dc.relation.ispartofOptics Lettersen_AU
dc.rightsCreative Commons Attribution 4.0en_AU
dc.titleStationary and Dynamical Properties of Pure-Quartic Solitonsen_AU
dc.typeArticleen_AU
dc.subject.asrc0205 Optical Physicsen_AU
dc.identifier.doi10.1364/OL.44.003306
dc.type.pubtypeAuthor accepted manuscripten_AU
dc.relation.arcDP18010223
dc.rights.otherKevin K. K. Tam, Tristram J. Alexander, Andrea Blanco-Redondo, and C. Martijn de Sterke, "Stationary and dynamical properties of pure-quartic solitons," Opt. Lett. 44, 3306-3309 (2019)en_AU
usyd.facultySeS faculties schools::Faculty of Science::School of Physicsen_AU
usyd.citation.volume44en_AU
usyd.citation.issue13en_AU
usyd.citation.spage3306en_AU
usyd.citation.epage3309en_AU
workflow.metadata.onlyNoen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.