From laminar to turbulent flow in a dry powder inhaler: the effect of simple design modifications
Access status:
Open Access
Type
ArticleAbstract
In order to better understand powder dispersion in dry powder inhaler (DPI) devices, a new
powder disperser was designed, which uses flow modifiers to alter powder fluidization behavior
so as to physically replicate various flow conditions observed in a range of commercial DPIs. ...
See moreIn order to better understand powder dispersion in dry powder inhaler (DPI) devices, a new powder disperser was designed, which uses flow modifiers to alter powder fluidization behavior so as to physically replicate various flow conditions observed in a range of commercial DPIs. The influence of these modifiers on the performance of the DPI was analyzed for flowrates progressing from laminar (15 L/min) to transitional (30 L/min), and finally turbulent flow regimes (60 L/min) in the device. The aerosol performance of the disperser was measured using a Next Generation Impactor. For flowrate in the laminar regime, powder evacuation from the disperser was generally insufficient (<30%), which was increased to >85% when the device was operated in the turbulent flow regime. In contrast, the highest fine particle fraction (FPF) and lowest throat deposition were achieved when operating in the transitional flow regime. The FPF could be increased further by applying flow modifications such as narrowing the air passage before the powder pocket, inducing localized turbulence (by a grid) near the powder pocket, and by changing the loading position of the powder. Flow modifiers had the most noticeable effect under a laminar flow regime, however, the device operated most efficiently under a transitional flow regime.
See less
See moreIn order to better understand powder dispersion in dry powder inhaler (DPI) devices, a new powder disperser was designed, which uses flow modifiers to alter powder fluidization behavior so as to physically replicate various flow conditions observed in a range of commercial DPIs. The influence of these modifiers on the performance of the DPI was analyzed for flowrates progressing from laminar (15 L/min) to transitional (30 L/min), and finally turbulent flow regimes (60 L/min) in the device. The aerosol performance of the disperser was measured using a Next Generation Impactor. For flowrate in the laminar regime, powder evacuation from the disperser was generally insufficient (<30%), which was increased to >85% when the device was operated in the turbulent flow regime. In contrast, the highest fine particle fraction (FPF) and lowest throat deposition were achieved when operating in the transitional flow regime. The FPF could be increased further by applying flow modifications such as narrowing the air passage before the powder pocket, inducing localized turbulence (by a grid) near the powder pocket, and by changing the loading position of the powder. Flow modifiers had the most noticeable effect under a laminar flow regime, however, the device operated most efficiently under a transitional flow regime.
See less
Date
2022Source title
International Journal of PharmaceuticsVolume
616Publisher
ElsevierFunding information
ARC DP190101237Licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0Faculty/School
Faculty of Engineering, School of Aerospace Mechanical and Mechatronic EngineeringSubjects
Dry Powder InhalerShare