Show simple item record

FieldValueLanguage
dc.contributor.authorChen, Junsheng
dc.date.accessioned2021-06-29T00:10:05Z
dc.date.available2021-06-29T00:10:05Z
dc.date.issued2021en_AU
dc.identifier.urihttps://hdl.handle.net/2123/25536
dc.description.abstractNovel clean energy conversion and storage technologies, such as electrochemical water splitting and metal-air battery, play significant roles in the future clean energy society. Oxygen evolution reaction (OER), as the fundamental reaction of these technologies, is crucial for their practical application. However, OER process is sluggish since the complex reaction process (multi-electron and multi-intermediate involved reaction). Developing efficient and affordable OER electrocatalysts remains a great challenge. Recently, the multimetal incorporation strategy has aroused extensive research interest since it can effectively enhance the catalytic performance of the catalysts. Nevertheless, there are still many scientific questions to be answered for such materials systems, such as the reaction mechanism and the optimum element composition. In this thesis, earth-abundant transition metals Cobalt and iron were selected as the basic elements. Cheap and abundant metals Vanadium, Chromium, and Tungsten were chosen as the incorporation elements respectively because of their unique d orbital structure in oxidation state. Their oxides/(oxy)hydroxides were elaborately designed and synthesised. The OER performance of the incorporated materials display a huge improvement. A variety of characterisations were employed to investigate the electrochemical properties of the materials. Theoretical calculations were also applied and combined with the characterisation observation to explain the reaction mechanism and the role of the incorporation element. Practical electrical water electrolyser devices were built up to determine the synthesised OER electrocatalysts in a real situation. Specifically, a facile electrodeposition catalysts synthesis method was developed, which can rapidly manufacture electrodes with efficient OER electrocatalysts on a large scale.en_AU
dc.language.isoenen_AU
dc.subjectOERen_AU
dc.subjectelectrocatalystsen_AU
dc.titleTernary Metal Oxide/(Oxy)Hydroxide for Efficient Oxygen Evolution Reactionen_AU
dc.typeThesis
dc.type.thesisDoctor of Philosophyen_AU
dc.rights.otherThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
usyd.facultySeS faculties schools::Faculty of Engineering::School of Chemical and Biomolecular Engineeringen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU
usyd.advisorWei, Li


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.