Ternary Metal Oxide/(Oxy)Hydroxide for Efficient Oxygen Evolution Reaction
Access status:
USyd Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Chen, JunshengAbstract
Novel clean energy conversion and storage technologies, such as electrochemical water splitting and metal-air battery, play significant roles in the future clean energy society. Oxygen evolution reaction (OER), as the fundamental reaction of these technologies, is crucial for their ...
See moreNovel clean energy conversion and storage technologies, such as electrochemical water splitting and metal-air battery, play significant roles in the future clean energy society. Oxygen evolution reaction (OER), as the fundamental reaction of these technologies, is crucial for their practical application. However, OER process is sluggish since the complex reaction process (multi-electron and multi-intermediate involved reaction). Developing efficient and affordable OER electrocatalysts remains a great challenge. Recently, the multimetal incorporation strategy has aroused extensive research interest since it can effectively enhance the catalytic performance of the catalysts. Nevertheless, there are still many scientific questions to be answered for such materials systems, such as the reaction mechanism and the optimum element composition. In this thesis, earth-abundant transition metals Cobalt and iron were selected as the basic elements. Cheap and abundant metals Vanadium, Chromium, and Tungsten were chosen as the incorporation elements respectively because of their unique d orbital structure in oxidation state. Their oxides/(oxy)hydroxides were elaborately designed and synthesised. The OER performance of the incorporated materials display a huge improvement. A variety of characterisations were employed to investigate the electrochemical properties of the materials. Theoretical calculations were also applied and combined with the characterisation observation to explain the reaction mechanism and the role of the incorporation element. Practical electrical water electrolyser devices were built up to determine the synthesised OER electrocatalysts in a real situation. Specifically, a facile electrodeposition catalysts synthesis method was developed, which can rapidly manufacture electrodes with efficient OER electrocatalysts on a large scale.
See less
See moreNovel clean energy conversion and storage technologies, such as electrochemical water splitting and metal-air battery, play significant roles in the future clean energy society. Oxygen evolution reaction (OER), as the fundamental reaction of these technologies, is crucial for their practical application. However, OER process is sluggish since the complex reaction process (multi-electron and multi-intermediate involved reaction). Developing efficient and affordable OER electrocatalysts remains a great challenge. Recently, the multimetal incorporation strategy has aroused extensive research interest since it can effectively enhance the catalytic performance of the catalysts. Nevertheless, there are still many scientific questions to be answered for such materials systems, such as the reaction mechanism and the optimum element composition. In this thesis, earth-abundant transition metals Cobalt and iron were selected as the basic elements. Cheap and abundant metals Vanadium, Chromium, and Tungsten were chosen as the incorporation elements respectively because of their unique d orbital structure in oxidation state. Their oxides/(oxy)hydroxides were elaborately designed and synthesised. The OER performance of the incorporated materials display a huge improvement. A variety of characterisations were employed to investigate the electrochemical properties of the materials. Theoretical calculations were also applied and combined with the characterisation observation to explain the reaction mechanism and the role of the incorporation element. Practical electrical water electrolyser devices were built up to determine the synthesised OER electrocatalysts in a real situation. Specifically, a facile electrodeposition catalysts synthesis method was developed, which can rapidly manufacture electrodes with efficient OER electrocatalysts on a large scale.
See less
Date
2021Rights statement
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering, School of Chemical and Biomolecular EngineeringAwarding institution
The University of SydneyShare