Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis
Access status:
Open Access
Type
ArticleAuthor/s
Liu, HuiminWu, Ping
Li, Haitao
Chen, Zibin
Wang, Lizhuo
Zeng, Xin
Zhu, Yuxiang
Jiang, Yijiao
Liao, Xiaozhou
Haynes, Brian S.
Ye, Jinhua
Stampfl, Catherine
Huang, Jun
Abstract
Harnessing the vast supply of solar energy as the driving force to produce ammonia from abundant nitrogen gas and water is beneficial for both relieving energy demands and developing sustainable chemical industry. Bulk carbon nitride (B-g-C3N4), exfoliated carbon nitride (E-g-C3N4) ...
See moreHarnessing the vast supply of solar energy as the driving force to produce ammonia from abundant nitrogen gas and water is beneficial for both relieving energy demands and developing sustainable chemical industry. Bulk carbon nitride (B-g-C3N4), exfoliated carbon nitride (E-g-C3N4) and graphite (g-C) supported Ru-K catalysts, denoted as Ru-K/B-g-C3N4, Ru-K/E-g-C3N4 and Ru-K/g-C, respectively, with the layered materials serving both as supports and light harvesters, were designed for photocatalytic ammonia synthesis. It was discovered that, besides the light harvesting properties of the catalysts which played roles in photocatalytic reactions, the structure of the supports influenced greatly the preferential locations of Ru species, which further exerted effects on the N2 activation process and ultimately impacted the ammonia production rate. The fine Ru nanoparticles uniformly and randomly dispersed on the monolayered E-g-C3N4 did not provide outstanding activity in ammonia photosynthesis; in contrast, Ru nanoparticles at the step edges of bulk g-C3N4 exhibited lower overall barriers for N2 activation and a much enhanced photocatalytic ammonia synthesis rate due to the synergy effects between metal and support as confirmed by density functional theory (DFT) calculations. The discovery of the relationship between reactivity and support geometry in this study will be important in guiding the rational predesign of efficient photocatalysts.
See less
See moreHarnessing the vast supply of solar energy as the driving force to produce ammonia from abundant nitrogen gas and water is beneficial for both relieving energy demands and developing sustainable chemical industry. Bulk carbon nitride (B-g-C3N4), exfoliated carbon nitride (E-g-C3N4) and graphite (g-C) supported Ru-K catalysts, denoted as Ru-K/B-g-C3N4, Ru-K/E-g-C3N4 and Ru-K/g-C, respectively, with the layered materials serving both as supports and light harvesters, were designed for photocatalytic ammonia synthesis. It was discovered that, besides the light harvesting properties of the catalysts which played roles in photocatalytic reactions, the structure of the supports influenced greatly the preferential locations of Ru species, which further exerted effects on the N2 activation process and ultimately impacted the ammonia production rate. The fine Ru nanoparticles uniformly and randomly dispersed on the monolayered E-g-C3N4 did not provide outstanding activity in ammonia photosynthesis; in contrast, Ru nanoparticles at the step edges of bulk g-C3N4 exhibited lower overall barriers for N2 activation and a much enhanced photocatalytic ammonia synthesis rate due to the synergy effects between metal and support as confirmed by density functional theory (DFT) calculations. The discovery of the relationship between reactivity and support geometry in this study will be important in guiding the rational predesign of efficient photocatalysts.
See less
Date
2019Source title
Applied Catalysis B: EnvironmentalVolume
259Publisher
ElsevierFunding information
ARC DP150103842Licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0Rights statement
This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0Faculty/School
Faculty of EngineeringShare