Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam
Access status:
Open Access
Type
ArticleAuthor/s
Wang, ZichunLing, Huajuan
Shi, Jeffrey
Stampfl, Catherine
Yu, Aibing
Hunger, Michael
Huang, Jun
Abstract
Using solid acid catalysts to replace liquid acids in the liquid-phase Beckmann rearrangement of cyclohexanone oxime (CHO) into ɛ-caprolactam (CPL) is crucial for the environmentally friendly production of synthetic fibers, such as Nylon-6. In this work, we prepared aluminum-containing ...
See moreUsing solid acid catalysts to replace liquid acids in the liquid-phase Beckmann rearrangement of cyclohexanone oxime (CHO) into ɛ-caprolactam (CPL) is crucial for the environmentally friendly production of synthetic fibers, such as Nylon-6. In this work, we prepared aluminum-containing MCM-41 catalysts under ultrasonic irradiation with various Si/Al ratios for this purpose. Quantitative 1H MAS NMR investigations show that ultrasonic irradiation significantly promotes the formation of active Brønsted acid sites (BAS) on the [Al]MCM-41 catalysts up to 8 times higher than those prepared at the same conditions without ultrasonic irradiation, and up to 12 times higher BAS density than those reported in the literatures. The catalytic performance of [Al]MCM-41 catalysts can be strongly improved with increasing the BAS density, particularly to the ratio of BAS/(weakly acidic SiOH groups). Moreover, [Al]MCM-41 catalysts dehydrated at 393 K obtained two time higher CHO conversion and CPL yield than that dehydrated at 473 K. Hydrogen-bonded water molecules retained at low dehydration temperature may block surface SiOH groups and promote the reaction process. With higher BAS density resulting from ultrasonic irradiation, [Al]MCM-41 catalyst (Si/Al = 10) in this work obtained the highest CPL yield among all [Al]MCM-41 materials reported for liquid-phase Beckmann rearrangement up to now. Finally, the reusability of [Al]MCM-41 catalyst was tested and no significant activity loss can be observed after five reaction cycles.
See less
See moreUsing solid acid catalysts to replace liquid acids in the liquid-phase Beckmann rearrangement of cyclohexanone oxime (CHO) into ɛ-caprolactam (CPL) is crucial for the environmentally friendly production of synthetic fibers, such as Nylon-6. In this work, we prepared aluminum-containing MCM-41 catalysts under ultrasonic irradiation with various Si/Al ratios for this purpose. Quantitative 1H MAS NMR investigations show that ultrasonic irradiation significantly promotes the formation of active Brønsted acid sites (BAS) on the [Al]MCM-41 catalysts up to 8 times higher than those prepared at the same conditions without ultrasonic irradiation, and up to 12 times higher BAS density than those reported in the literatures. The catalytic performance of [Al]MCM-41 catalysts can be strongly improved with increasing the BAS density, particularly to the ratio of BAS/(weakly acidic SiOH groups). Moreover, [Al]MCM-41 catalysts dehydrated at 393 K obtained two time higher CHO conversion and CPL yield than that dehydrated at 473 K. Hydrogen-bonded water molecules retained at low dehydration temperature may block surface SiOH groups and promote the reaction process. With higher BAS density resulting from ultrasonic irradiation, [Al]MCM-41 catalyst (Si/Al = 10) in this work obtained the highest CPL yield among all [Al]MCM-41 materials reported for liquid-phase Beckmann rearrangement up to now. Finally, the reusability of [Al]MCM-41 catalyst was tested and no significant activity loss can be observed after five reaction cycles.
See less
Date
2018Source title
Journal of CatalysisVolume
358Publisher
ElsevierRights statement
This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0Faculty/School
Faculty of EngineeringShare