Show simple item record

FieldValueLanguage
dc.contributor.authorWang, Taihua
dc.contributor.authorDansereau, Donald G
dc.date.accessioned2020-09-29
dc.date.available2020-09-29
dc.date.issued2020-01-01en_AU
dc.identifier.urihttps://roboticimaging.org/Projects/LSClassifier/
dc.identifier.urihttps://hdl.handle.net/2123/23495
dc.description.abstractThis dataset accompanies the paper Multiplexed Illumination for Classifying Visually Similar Objects. Project details are here: https://roboticimaging.org/Projects/LSClassifier/ The dataset contains 16000 10-bit images of five types of real and synthetic fruit. It is split across three categories: Relightable models: high-quality single-illuminant images. These drive the pattern selection and classifier training, and can be used to devise and evaluate new multiplexing schemes. SNR-Optimal: Captured with inference-time conditions, with more evident noise, and with illumination patterns selected to be optimal in terms of signal-to-noise (SNR) ratio. Greedy: Also captured with inference-time conditions, these patterns were jointly trained along with the classifier using our proposed greedy pattern selection scheme. Preprint of paper available at: https://arxiv.org/abs/2009.11084en_AU
dc.language.isoenen_AU
dc.publisherThe University of Sydneyen_AU
dc.relation.isreferencedbyhttps://doi.org/10.1364/AO.414184
dc.rightsCopyright All Rights Reserveden_AU
dc.subjectImage classificationen_AU
dc.subjectmultiplexingen_AU
dc.subjectlight stageen_AU
dc.subjectcomputational imagingen_AU
dc.titleDataset: Multiplexed Illumination for Classifying Visually Similar Objectsen_AU
dc.typeDataseten_AU
dc.identifier.doi10.25910/74mq-ex65
usyd.facultySeS faculties schools::Faculty of Engineering::School of Aerospace Mechanical and Mechatronic Engineeringen_AU
usyd.departmentSydney Institute for Robotics and Intelligent Systemsen_AU
workflow.metadata.onlyYesen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.