Too similar to combine? On negative weights in forecast combination
Access status:
Open Access
Type
Working PaperAbstract
This paper provides the first thorough investigation of the negative weights that can emerge when combining forecasts. The usual practice in the literature is to ignore or trim negative weights, i.e., set them to zero. This default strategy has its merits, but it is not optimal. ...
See moreThis paper provides the first thorough investigation of the negative weights that can emerge when combining forecasts. The usual practice in the literature is to ignore or trim negative weights, i.e., set them to zero. This default strategy has its merits, but it is not optimal. We study the problem from a variety of different angles, and the main conclusion is that negative weights emerge when highly correlated forecasts with similar variances are combined. In this situation, the estimated weights have large variances, and trimming reduces the variance of the weights and improves the combined forecast. The threshold of zero is arbitrary and can be improved. We propose an optimal trimming threshold, i.e., an additional tuning parameter to improve forecasting performance. The effects of optimal trimming are demonstrated in simulations. In the empirical example using the European Central Bank Survey of Professional Forecasters, we find that the new strategy performs exceptionally well and can deliver improvements of more than 10% for inflation, up to 20% for GDP growth, and more than 20% for unemployment forecasts relative to the equal-weight benchmark.
See less
See moreThis paper provides the first thorough investigation of the negative weights that can emerge when combining forecasts. The usual practice in the literature is to ignore or trim negative weights, i.e., set them to zero. This default strategy has its merits, but it is not optimal. We study the problem from a variety of different angles, and the main conclusion is that negative weights emerge when highly correlated forecasts with similar variances are combined. In this situation, the estimated weights have large variances, and trimming reduces the variance of the weights and improves the combined forecast. The threshold of zero is arbitrary and can be improved. We propose an optimal trimming threshold, i.e., an additional tuning parameter to improve forecasting performance. The effects of optimal trimming are demonstrated in simulations. In the empirical example using the European Central Bank Survey of Professional Forecasters, we find that the new strategy performs exceptionally well and can deliver improvements of more than 10% for inflation, up to 20% for GDP growth, and more than 20% for unemployment forecasts relative to the equal-weight benchmark.
See less
Date
2020-01-01Publisher
Business AnalyticsLicence
Copyright All Rights ReservedFaculty/School
The University of Sydney Business SchoolDepartment, Discipline or Centre
Discipline of Business AnalyticsShare