Mycobacterium marinum infection drives foam cell differentiation in zebrafish infection models
Access status:
Open Access
Type
ArticleAuthor/s
Johansen, MattKasparian, Joshua
Hortle, Elinor
Britton, Warwick
Purdie, Auriol
Oehlers, Stefan
Abstract
Host lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model ...
See moreHost lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model recapitulates many aspects of human-M. tuberculosis infection and is used as a model to investigate the structural components of the mycobacterial granuloma. Here, we demonstrate that the zebrafish-M. marinum granuloma contains foam cells and that the transdifferentiation of macrophages into foam cells is driven by the mycobacterial ESX1 pathogenicity locus. This report demonstrates conservation of an important aspect of mycobacterial infection across species.
See less
See moreHost lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model recapitulates many aspects of human-M. tuberculosis infection and is used as a model to investigate the structural components of the mycobacterial granuloma. Here, we demonstrate that the zebrafish-M. marinum granuloma contains foam cells and that the transdifferentiation of macrophages into foam cells is driven by the mycobacterial ESX1 pathogenicity locus. This report demonstrates conservation of an important aspect of mycobacterial infection across species.
See less
Date
2018-11-01Publisher
Developmental & Comparative ImmunologyCitation
88:169-172Share