UniversityLibraryCurrent studentsStaff intranet
University of Sydney
University of Sydney
View Item 
  • Sydney eScholarship Home
  • Science
  • Research Papers and Publications. Science
  • View Item
  • Sydney eScholarship Home
  • Science
  • Research Papers and Publications. Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The voltage-sensitive dye RH421 detects a Na+,K+-ATPase conformational change at the membrane interface

Thumbnail
View/Open
BBABiomembr2017_Garcia.pdf (PDF, 917.52KB)
Date
2017-01-20
Author
Garcia, Alvaro
Promod, Pratap R.
Lupfert, Christian
Cornelius, Flemming
Jacquemin, Denis
Lev, Bogdan
Allen, Toby W.
Clarke, Ronald J.
Metadata
Show full item record
Abstract
RH421 is a voltage-sensitive fluorescent styrylpyridinium dye which has often been used to probe the kinetics of Na+,K+-ATPase partial reactions. The origin of the dye’s response has up to now been unclear. Here we show that RH421 responds to phosphorylation of the Na+,K+-ATPase by inorganic phosphate with a fluorescence increase. Analysis of the kinetics of the fluorescence response indicates that the probe is not detecting phosphorylation itself but rather a shift in the protein’s E1/E2 conformational equilibrium induced by preferential phosphate binding to and phosphorylation of enzyme in the E2 conformation. Molecular dynamics simulations of crystal structures in lipid bilayers indicate some change in the protein’s hydrophobic thickness during the E1-E2 transition, which may influence the dye response. However, the transition is known to involve significant rearrangement of the protein’s highly charged lysine-rich cytoplasmic N-terminal sequence. Using poly-L-lysine as a model of the N-terminus, we show that an analogous response of RH421 to the E1 → E2P conformational change is produced by poly-L-lysine binding to the surface of the Na+,K+-ATPase-containing membrane fragments. Thus, it seems that the prime origin of the RH421 fluorescence response is a change in the interaction of the protein’s N-terminus with the surrounding membrane. Quantum mechanical calculations of the dye’s visible absorption spectrum give further support to this conclusion. The results obtained indicate that membrane binding and release of the N-terminus of the Na+,K+-ATPase α-subunit are intimately involved in the protein’s catalytic cycle and could represent an effective site of regulation.
URI
http://hdl.handle.net/2123/21063
Collections
  • Research Papers and Publications. Science [189]

Browse

All of Sydney eScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Links

University homeLibraryCurrent studentsStaff intranet

Repository

  • About us
  • FAQ
  • Policies & guidelines
  • Email us
  • Non-UniKey login
Leadership for good starts here

Media

  • News
  • Find an expert
  • Media contacts

Student links

  • Log in to University systems
  • Study dates
  • Student handbooks
  • Timetables
  • Library

About us

  • Our world rankings
  • Faculties and schools
  • Centres and institutes
  • Campus locations
  • Maps and locations

Connect

  • Contact us
  • Find a staff member
  • Careers at Sydney
  • Events
  • Emergencies and personal safety
Inspired: Campaign to support the University of SydneyGroup of Eight
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A