The Dynamic Topography of Eastern China Since the Latest Jurassic Period
Access status:
Open Access
Type
ArticleAbstract
Some changes in the topography of eastern China since Late Jurassic times cannot be well explained by lithospheric deformation. Here we analyze global mantle flow models to investigate how mantle-driven long-wavelength topography may have contributed to shaping the surface topography ...
See moreSome changes in the topography of eastern China since Late Jurassic times cannot be well explained by lithospheric deformation. Here we analyze global mantle flow models to investigate how mantle-driven long-wavelength topography may have contributed to shaping the surface topography of eastern China. Paleodrainage directions suggest that a southward tilted topography once existed in eastern north China in the latest Jurassic Period, which is different from that at present day (southeastward tilting). Our model dynamic topography reveals a southward tilting topography between 160 and 150 Ma, followed by southeastward tilting and rapid subsidence, which is compatible with paleodrainage directions and tectonic subsidence of the Ordos Basin. The Cretaceous anomalous subsidence of the Songliao and North Yellow Sea basins, as well as the Cenozoic anomalous subsidence of the East China Sea Shelf Basin, can also be explained by dynamic topography. An apatite fission track study in the Taihang Mountains reveals four stages of evolution: Late Jurassic fast unroofing, Cretaceous slow unroofing, early Cenozoic fast unroofing, and late Cenozoic slow unroofing. We propose that mantle flow influenced this surface unroofing because the model predicts Late Jurassic dynamic uplift, Cretaceous dynamic subsidence, early Cenozoic dynamic uplift, and late Cenozoic dynamic subsidence. Apatite fission track data from northern south China are also in reasonable agreement with predicted dynamic topography between 80 and 30 Ma. The spatial and temporal agreement between geological observations and model dynamic topography indicates that mantle flow has had a significant influence in shaping the surface topography of eastern China. ©2018. American Geophysical Union. All Rights Reserved.
See less
See moreSome changes in the topography of eastern China since Late Jurassic times cannot be well explained by lithospheric deformation. Here we analyze global mantle flow models to investigate how mantle-driven long-wavelength topography may have contributed to shaping the surface topography of eastern China. Paleodrainage directions suggest that a southward tilted topography once existed in eastern north China in the latest Jurassic Period, which is different from that at present day (southeastward tilting). Our model dynamic topography reveals a southward tilting topography between 160 and 150 Ma, followed by southeastward tilting and rapid subsidence, which is compatible with paleodrainage directions and tectonic subsidence of the Ordos Basin. The Cretaceous anomalous subsidence of the Songliao and North Yellow Sea basins, as well as the Cenozoic anomalous subsidence of the East China Sea Shelf Basin, can also be explained by dynamic topography. An apatite fission track study in the Taihang Mountains reveals four stages of evolution: Late Jurassic fast unroofing, Cretaceous slow unroofing, early Cenozoic fast unroofing, and late Cenozoic slow unroofing. We propose that mantle flow influenced this surface unroofing because the model predicts Late Jurassic dynamic uplift, Cretaceous dynamic subsidence, early Cenozoic dynamic uplift, and late Cenozoic dynamic subsidence. Apatite fission track data from northern south China are also in reasonable agreement with predicted dynamic topography between 80 and 30 Ma. The spatial and temporal agreement between geological observations and model dynamic topography indicates that mantle flow has had a significant influence in shaping the surface topography of eastern China. ©2018. American Geophysical Union. All Rights Reserved.
See less
Date
2018-05-05Publisher
American Geophysical UnionLicence
©2018. American Geophysical Union. All Rights Reserved.Citation
Cao, X., Flament, N., Müller, D., & Li, S. (2018). The dynamic topography of eastern China since the latest Jurassic Period. Tectonics, 37(5), 1274-1291. doi:10.1029/2017TC004830Share