UniversityLibraryCurrent studentsStaff intranet
University of Sydney
University of Sydney
View Item 
  • Sydney eScholarship Home
  • Science
  • Research Papers and Publications. Science
  • View Item
  • Sydney eScholarship Home
  • Science
  • Research Papers and Publications. Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes

Thumbnail
View/Open
Braz++_Caribbean_JGeody_RESUBMIITED.pdf (PDF, 2.19MB)
Date
2018-09-05
Author
Braz, Carmen
Seton, Maria
Flament, Nicolas
Muller, R. Dietmar
Metadata
Show full item record
Abstract
A complex history of subduction, back-arc basin formation, terrane accretion and transpressional shearing characterizes the evolution of the Caribbean and northern South American margin since Jurassic times. Quantitative plate tectonic reconstructions of the area do not include Jurassic-Cretaceous back-arc terranes of which there are both geological and geophysical observations. We developed a revised plate tectonic reconstruction based on geological observations and seismic tomography models to constrain the Jurassic-Cretaceous subduction history of eastern Panthalassa, along the western margin of the Caribbean region. This reconstruction considers the opening of a Northern Andean back-arc basin at 145 Ma, the Quebradagrande back-arc, closing at 120 Ma and followed by terrane accretion and northward translation along the South American margin starting at 100 Ma. This kinematic reconstruction is tested against two previously published tectonic reconstructions via coupling with global numerical mantle convection models using CitcomS. A comparison of modelled versus tomographically imaged mantle structure reveals that subduction outboard of the South American margin, lacking in previous tectonic models, is required to reproduce mid-mantle positive seismic anomalies imaged in P- and S-wave seismic tomography beneath South America, 500–2000 km in depth. Furthermore, we show that this subduction zone is likely produced by a back-arc basin that developed along the northern Andes during the Cretaceous via trench roll-back from 145 Ma and was closed at 100 Ma. The contemporaneous opening of the Quebradagrande back-arc basin with the Rocas Verdes back-arc basin in the southern Andes is consistent with a model that invokes return flow of mantle material behind a retreating slab and may explain why extension along the Peruvian and Chilean sections of the Andean margin did not experience full crustal break-up and back-arc opening during the late Jurassic-early Cretaceous Period.
URI
http://hdl.handle.net/2123/20830
Collections
  • Research Papers and Publications. Science [184]

Browse

All of Sydney eScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Links

University homeLibraryCurrent studentsStaff intranet

Repository

  • About us
  • FAQ
  • Policies & guidelines
  • Email us
  • Non-UniKey login
Leadership for good starts here

Media

  • News
  • Find an expert
  • Media contacts

Student links

  • Log in to University systems
  • Study dates
  • Student handbooks
  • Timetables
  • Library

About us

  • Our world rankings
  • Faculties and schools
  • Centres and institutes
  • Campus locations
  • Maps and locations

Connect

  • Contact us
  • Find a staff member
  • Careers at Sydney
  • Events
  • Emergencies and personal safety
Inspired: Campaign to support the University of SydneyGroup of Eight
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A