Prostate segmentation in MR images using ensemble deep convolutional neural networks
Access status:
Open Access
Type
Conference paperAbstract
The automated segmentation of the prostate gland from MR images is increasingly used for clinical diagnosis. Since deep learning demonstrates superior performance in computer vision applications, we propose a coarse-to-fine segmentation strategy using ensemble deep convolutional ...
See moreThe automated segmentation of the prostate gland from MR images is increasingly used for clinical diagnosis. Since deep learning demonstrates superior performance in computer vision applications, we propose a coarse-to-fine segmentation strategy using ensemble deep convolutional neural networks (DCNNs) to address prostate segmentation in MR images. First, we use registration-based coarse segmentation on pre-processed prostate MR images to define the potential boundary region. We then train four DCNNs as voxel-based classifiers and classify the voxel in the potential region is a prostate voxel when at least three DCNNs made that decision. Finally, we use boundary refinement to eliminate the outliers and smooth the boundary. We evaluated our approach on the MICCAI PROMIS12 challenge dataset and our experimental results verify the effectiveness of the proposed algorithms.
See less
See moreThe automated segmentation of the prostate gland from MR images is increasingly used for clinical diagnosis. Since deep learning demonstrates superior performance in computer vision applications, we propose a coarse-to-fine segmentation strategy using ensemble deep convolutional neural networks (DCNNs) to address prostate segmentation in MR images. First, we use registration-based coarse segmentation on pre-processed prostate MR images to define the potential boundary region. We then train four DCNNs as voxel-based classifiers and classify the voxel in the potential region is a prostate voxel when at least three DCNNs made that decision. Finally, we use boundary refinement to eliminate the outliers and smooth the boundary. We evaluated our approach on the MICCAI PROMIS12 challenge dataset and our experimental results verify the effectiveness of the proposed algorithms.
See less
Date
2017-06-19Publisher
IEEELicence
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Citation
H. Jia, Y. Xia, W. Cai, M. Fulham and D. D. Feng, "Prostate segmentation in MR images using ensemble deep convolutional neural networks," 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, 2017, pp. 762-765. doi: 10.1109/ISBI.2017.7950630Share