Transferable Multi-model Ensemble for Benign-Malignant Lung Nodule Classification on Chest CT
Access status:
Open Access
Metadata
Show full item recordType
Conference paperAbstract
The classification of benign versus malignant lung nodules using chest CT plays a pivotal role in the early detection of lung cancer and this early detection has the best chance of cure. Although deep learning is now the most successful solution for image classification problems, ...
See moreThe classification of benign versus malignant lung nodules using chest CT plays a pivotal role in the early detection of lung cancer and this early detection has the best chance of cure. Although deep learning is now the most successful solution for image classification problems, it requires a myriad number of training data, which are not usually readily available for most routine medical imaging applications. In this paper, we propose the transferable multi-model ensemble (TMME) algorithm to separate malignant from benign lung nodules using limited chest CT data. This algorithm transfers the image representation abilities of three ResNet-50 models, which were pre-trained on the ImageNet database, to characterize the overall appearance, heterogeneity of voxel values and heterogeneity of shape of lung nodules, respectively, and jointly utilizes them to classify lung nodules with an adaptive weighting scheme learned during the error back propagation. Experimental results on the benchmark LIDC-IDRI dataset show that our proposed TMME algorithm achieves a lung nodule classification accuracy of 93.40%, which is markedly higher than the accuracy of seven state-of-the-art approaches.
See less
See moreThe classification of benign versus malignant lung nodules using chest CT plays a pivotal role in the early detection of lung cancer and this early detection has the best chance of cure. Although deep learning is now the most successful solution for image classification problems, it requires a myriad number of training data, which are not usually readily available for most routine medical imaging applications. In this paper, we propose the transferable multi-model ensemble (TMME) algorithm to separate malignant from benign lung nodules using limited chest CT data. This algorithm transfers the image representation abilities of three ResNet-50 models, which were pre-trained on the ImageNet database, to characterize the overall appearance, heterogeneity of voxel values and heterogeneity of shape of lung nodules, respectively, and jointly utilizes them to classify lung nodules with an adaptive weighting scheme learned during the error back propagation. Experimental results on the benchmark LIDC-IDRI dataset show that our proposed TMME algorithm achieves a lung nodule classification accuracy of 93.40%, which is markedly higher than the accuracy of seven state-of-the-art approaches.
See less
Date
2017-09-04Publisher
SpringerLicence
This is a post-peer-review, pre-copyedit version of an article published in Neuroinformatics. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-66179-7_75.Citation
Xie Y., Xia Y., Zhang J., Feng D.D., Fulham M., Cai W. (2017) Transferable Multi-model Ensemble for Benign-Malignant Lung Nodule Classification on Chest CT. In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science, vol 10435. Springer, ChamShare