Robust saliency detection via regularized random walks ranking
Access status:
Open Access
Type
Conference paperAbstract
In the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection ...
See moreIn the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection approach that takes advantage of both region-based features and image details. To provide more accurate saliency estimations, we first optimize the image boundary selection by the proposed erroneous boundary removal. By taking the image details and region-based estimations into account, we then propose the regularized random walks ranking to formulate pixel-wised saliency maps from the superpixel-based background and foreground saliency estimations. Experiment results on two public datasets indicate the significantly improved accuracy and robustness of the proposed algorithm in comparison with 12 state-of-the-art saliency detection approaches.
See less
See moreIn the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection approach that takes advantage of both region-based features and image details. To provide more accurate saliency estimations, we first optimize the image boundary selection by the proposed erroneous boundary removal. By taking the image details and region-based estimations into account, we then propose the regularized random walks ranking to formulate pixel-wised saliency maps from the superpixel-based background and foreground saliency estimations. Experiment results on two public datasets indicate the significantly improved accuracy and robustness of the proposed algorithm in comparison with 12 state-of-the-art saliency detection approaches.
See less
Date
2015-10-15Publisher
IEEELicence
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Citation
Changyang Li, Yuchen Yuan, Weidong Cai, Yong Xia and David Dagan Feng, "Robust saliency detection via regularized random walks ranking," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 2710-2717. doi: 10.1109/CVPR.2015.7298887Share