Reconstruction of 3D neuron morphology using Rivulet back-tracking
Access status:
Open Access
Metadata
Show full item recordType
Conference paperAbstract
The 3D reconstruction of neuronal morphology is a powerful technique for investigating nervous systems. Due to the noises in optical microscopic images, the automated reconstruction of neuronal morphology has been a challenging problem. We propose a novel automatic neuron reconstruction ...
See moreThe 3D reconstruction of neuronal morphology is a powerful technique for investigating nervous systems. Due to the noises in optical microscopic images, the automated reconstruction of neuronal morphology has been a challenging problem. We propose a novel automatic neuron reconstruction algorithm, Rivulet, to target the challenges raised by the poor quality of the optical microscopic images. After the neuron images being de-noised with an anisotropic filter, the Rivulet algorithm combines multi-stencils fast-marching and iterative back-tracking from the geodesic farthest point on the segmented foreground. The neuron segments are dumped or merged according to a set of criteria at the end of each iteration. The proposed Rivulet tracing algorithm is evaluated with data provided from the BigNeuron Project. The experimental results demonstrate that Rivulet outperforms the compared state-of-the-art tracing methods when the images are of poor quality.
See less
See moreThe 3D reconstruction of neuronal morphology is a powerful technique for investigating nervous systems. Due to the noises in optical microscopic images, the automated reconstruction of neuronal morphology has been a challenging problem. We propose a novel automatic neuron reconstruction algorithm, Rivulet, to target the challenges raised by the poor quality of the optical microscopic images. After the neuron images being de-noised with an anisotropic filter, the Rivulet algorithm combines multi-stencils fast-marching and iterative back-tracking from the geodesic farthest point on the segmented foreground. The neuron segments are dumped or merged according to a set of criteria at the end of each iteration. The proposed Rivulet tracing algorithm is evaluated with data provided from the BigNeuron Project. The experimental results demonstrate that Rivulet outperforms the compared state-of-the-art tracing methods when the images are of poor quality.
See less
Date
2016-06-16Publisher
IEEELicence
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Citation
D. Zhang, S. Liu, S. Liu, D. Feng, H. Peng and W. Cai, "Reconstruction of 3D neuron morphology using Rivulet back-tracking," 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, 2016, pp. 598-601. doi: 10.1109/ISBI.2016.7493339Share