Movement of IS26-Associated Antibiotic Resistance Genes Occurs via a Translocatable Unit That Includes a Single IS26 and Preferentially Inserts Adjacent to Another IS26
Access status:
Open Access
Type
ArticleAbstract
TheinsertionsequenceIS26playsakeyroleindisseminatingantibioticresistancegenesinGram-negativebacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement ...
See moreTheinsertionsequenceIS26playsakeyroleindisseminatingantibioticresistancegenesinGram-negativebacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transpo- sition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This re- action was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high- frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency.
See less
See moreTheinsertionsequenceIS26playsakeyroleindisseminatingantibioticresistancegenesinGram-negativebacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transpo- sition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This re- action was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high- frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency.
See less
Date
2014-10-07Publisher
mBioCitation
Harmer, C. J., Moran, R. A., Hall, R. M. 2016. Movement of IS26-Associated Antibiotic Resistance Genes Occurs via a Translocatable Unit That Includes a Single IS26 and Preferentially Inserts Adjacent to Another IS26. mBio, 5, e01801-14.Share