Show simple item record

FieldValueLanguage
dc.contributor.authorChaichian, M.
dc.contributor.authorKulish, P. P.
dc.contributor.authorTureanu, A.
dc.contributor.authorZhang, Ruibin
dc.contributor.authorZhang, Xiao
dc.date.accessioned2016-02-17
dc.date.available2016-02-17
dc.date.issued2008-01-01
dc.identifier.citationNoncommutative fields and actions of twisted Poincare algebra, Journal of Mathematical Physics, vol.49, N/A, 2008,pp 042302-1-042302-16en_AU
dc.identifier.urihttp://hdl.handle.net/2123/14393
dc.description.abstractWithin the context of the twisted Poincaré algebra, there exists no noncommutative analog of the Minkowski space interpreted as the homogeneous space of the Poincaré group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalize to the noncommutative setting, and the twisted Poincaré algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of oncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying oncommutative field theory with deformed Poincaré symmetries.en_AU
dc.language.isoen_AUen_AU
dc.publisherAmerican Institute of Physicsen_AU
dc.titleNoncommutative fields and actions of twisted Poincare algebraen_AU
dc.typeArticleen_AU
dc.contributor.departmentFaculty of Scienceen_AU
dc.contributor.departmentSchool of Mathematics and Statisticsen_AU
dc.identifier.doiDOI: 10.1063/1.2907580


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.