Generalised Jantzen filtration of Lie superalgebras I.
Access status:
Open Access
Type
ArticleAbstract
A Jantzen type filtration for generalised Verma modules of Lie superalgebras is introduced. In the case of type I Lie superalgebras, it is shown that the generalised Jantzen filtration for any Kac module is the unique Loewy filtration, and the decomposition numbers of the layers ...
See moreA Jantzen type filtration for generalised Verma modules of Lie superalgebras is introduced. In the case of type I Lie superalgebras, it is shown that the generalised Jantzen filtration for any Kac module is the unique Loewy filtration, and the decomposition numbers of the layers of the filtration are determined by the coefficients of inverse Kazhdan–Lusztig polynomials. Furthermore, the length of the Jantzen filtration for any Kac module is determined explicitly in terms of the degree of atypicality of the highest weight. These results are applied to obtain a detailed description of the submodule lattices of Kac modules.
See less
See moreA Jantzen type filtration for generalised Verma modules of Lie superalgebras is introduced. In the case of type I Lie superalgebras, it is shown that the generalised Jantzen filtration for any Kac module is the unique Loewy filtration, and the decomposition numbers of the layers of the filtration are determined by the coefficients of inverse Kazhdan–Lusztig polynomials. Furthermore, the length of the Jantzen filtration for any Kac module is determined explicitly in terms of the degree of atypicality of the highest weight. These results are applied to obtain a detailed description of the submodule lattices of Kac modules.
See less
Date
2012-01-01Publisher
European Mathematical Society Publishing HouseDepartment, Discipline or Centre
Mathematics & StatisticsCitation
Generalised Jantzen filtration of Lie superalgebras I., European Mathematical Society Journal, vol.14, 4, 2012,pp 1103-1133Share