Show simple item record

FieldValueLanguage
dc.contributor.authorProkhorov, Artem
dc.contributor.authorSchepsmeier, Ulf
dc.contributor.authorZhu, Yajing
dc.date.accessioned2015-09-11
dc.date.available2015-09-11
dc.date.issued2015-09-11
dc.identifier.urihttp://hdl.handle.net/2123/13798
dc.description.abstractWe propose a family of goodness-of-fit tests for copulas. The tests use generalizations of the information matrix (IM) equality of White (1982) and so relate to the copula test proposed by Huang and Prokhorov (2014). The idea is that eigenspectrum-based statements of the IM equality reduce the degrees of freedom of the test's asymptotic distribution and lead to better size-power properties, even in high dimensions. The gains are especially pronounced for vine copulas, where additional benefits come from simplifications of score functions and the Hessian. We derive the asymptotic distribution of the generalized tests, accounting for the non-parametric estimation of the marginals and apply a parametric bootstrap procedure, valid when asymptotic critical values are inaccurate. In Monte Carlo simulations, we study the behavior of the new tests, compare them with several Cramer-von Mises type tests and confirm the desired properties of the new tests in high dimensions.en_AU
dc.language.isoen_USen_AU
dc.publisherBusiness Analytics.
dc.relation.ispartofseriesBAWP-2015-05en_AU
dc.subjectinformation matrix equalityen_AU
dc.subjectcopulaen_AU
dc.subjectgoodness-of- fiten_AU
dc.subjectvine copulasen_AU
dc.subjectR-vinesen_AU
dc.titleGeneralized Information Matrix Tests for Copulasen_AU
dc.typeWorking Paperen_AU
dc.contributor.departmentDiscipline of Business Analytics, University of Sydneyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.