Show simple item record

FieldValueLanguage
dc.contributor.authorProkhorov, Artem
dc.contributor.authorHirukawa, Masayuki
dc.date.accessioned2014-09-05
dc.date.available2014-09-05
dc.date.issued2014-09-05
dc.identifier.urihttp://hdl.handle.net/2123/11773
dc.description.abstractEconomists often use matched samples, especially when dealing with earnings data where a number of missing observations need to be imputed. In this paper, we demonstrate that the ordinary least squares estimator of the linear regression model using matched samples is inconsistent and has a non-standard convergence rate to its probability limit. If only a few variables are used to impute the missing data then it is possible to correct for the bias. We propose two semi-parametric bias-corrected estimators and explore their asymptotic properties. The estimators have an indirectinference interpretation and their convergence rates depend on the number of variables used in matching. We can attain the parametric convergence rate if that number is no greater than three. Monte Carlo simulations confirm that the bias correction works very well in such cases.en_AU
dc.language.isoen_USen_AU
dc.publisherBusiness Analytics.
dc.relation.ispartofseriesBAWP-2014-03en_AU
dc.subjectBias correctionen_AU
dc.subjectdifferencingen_AU
dc.subjectindirect inferenceen_AU
dc.subjectlinear regressionen_AU
dc.subjectmatching estimationen_AU
dc.subjectmeasurement error biasen_AU
dc.titleConsistent Estimation of Linear Regression Models Using Matched Dataen_AU
dc.typeWorking Paperen_AU
dc.contributor.departmentDiscipline of Business Analyticsen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.