Show simple item record

FieldValueLanguage
dc.contributor.authorBarwick, Michael John
dc.date.accessioned2012-11-11
dc.date.available2012-11-11
dc.date.issued2011-03-01
dc.identifier.urihttp://hdl.handle.net/2123/8755
dc.descriptionMaster of Scienceen_AU
dc.description.abstractIn this thesis, we will use the Newton polygon and the Puiseux characteristic to study complex analytic curves in C{x,y} and C[[x,y]]. This allows us to topologically classify the plane curve singularities. Chapter 1 will introduce the Newton polygon, the process of sliding towards a root and polar curve. The first section of chapter 2 contains the technical background to this topic. The second section introduces the Puiseux characteristic, and the third uses results from knot theory to classify the plane curve singularities as the cone over an iterated torus knot. In the third chapter, we will look at the Kuo-Lu theorem, which is a generalisation of Rolle’s theorem to complex curves. Finally, in the fourth chapter, we will give an application of the previous results to show a method of calculating the Lojasiewicz exponent.en_AU
dc.rightsThe author retains copyright of this thesis.
dc.subjectTopologyen_AU
dc.subjectNewton polygonen_AU
dc.subjectPuiseux characteristicen_AU
dc.titleThe Newton polygon and the Puiseux characteristicen_AU
dc.typeThesisen_AU
dc.date.valid2011-01-01en_AU
dc.type.thesisMasters by Researchen_AU
usyd.departmentDepartment of Mathematicsen_AU
usyd.departmentPure Mathematicsen_AU
usyd.degreeMaster of Science M.Sc.en_AU
usyd.awardinginstThe University of Sydneyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.