Deep learning enables MV-based real-time image guided radiation therapy for prostate cancer patients.
Access status:
Open Access
Type
ArticleAbstract
Objective. Using MV images for real-time image guided radiation therapy (IGRT) is ideal as it does not require additional imaging equipment, adds no additional imaging dose and provides motion data in the treatment beam frame of reference. However, accurate tracking using MV images ...
See moreObjective. Using MV images for real-time image guided radiation therapy (IGRT) is ideal as it does not require additional imaging equipment, adds no additional imaging dose and provides motion data in the treatment beam frame of reference. However, accurate tracking using MV images is challenging due to low contrast and modulated fields. Here, a novel real-time marker tracking system based on a convolutional neural network (CNN) classifier was developed and evaluated on retrospectively acquired patient data for MV-based IGRT for prostate cancer patients.Approach. MV images, acquired from 29 volumetric modulated arc therapy (VMAT) prostate cancer patients treated in a multi-institutional clinical trial, were used to train and evaluate a CNN-based marker tracking system. The CNN was trained using labelled MV images from 9 prostate cancer patients (35 fractions) with implanted markers. CNN performance was evaluated on an independent cohort of unseen MV images from 20 patients (78 fractions), using a Precision-Recall curve (PRC), area under the PRC plot (AUC) and sensitivity and specificity. The accuracy of the tracking system was evaluated on the same unseen dataset and quantified by calculating mean absolute (±1 SD) and [1st, 99th] percentiles of the geometric tracking error in treatment beam co-ordinates using manual identification as the ground truth.Main results. The CNN had an AUC of 0.99, sensitivity of 98.31% and specificity of 99.87%. The mean absolute geometric tracking error was 0.30 ± 0.27 and 0.35 ± 0.31 mm in the lateral and superior-inferior directions of the MV images, respectively. The [1st, 99th] percentiles of the error were [-1.03, 0.90] and [-1.12, 1.12] mm in the lateral and SI directions, respectively.Significance. The high classification performance on unseen MV images demonstrates the CNN can successfully identify implanted prostate markers. Furthermore, the sub-millimetre accuracy and precision of the marker tracking system demonstrates potential for adaptation to real-time applications.
See less
See moreObjective. Using MV images for real-time image guided radiation therapy (IGRT) is ideal as it does not require additional imaging equipment, adds no additional imaging dose and provides motion data in the treatment beam frame of reference. However, accurate tracking using MV images is challenging due to low contrast and modulated fields. Here, a novel real-time marker tracking system based on a convolutional neural network (CNN) classifier was developed and evaluated on retrospectively acquired patient data for MV-based IGRT for prostate cancer patients.Approach. MV images, acquired from 29 volumetric modulated arc therapy (VMAT) prostate cancer patients treated in a multi-institutional clinical trial, were used to train and evaluate a CNN-based marker tracking system. The CNN was trained using labelled MV images from 9 prostate cancer patients (35 fractions) with implanted markers. CNN performance was evaluated on an independent cohort of unseen MV images from 20 patients (78 fractions), using a Precision-Recall curve (PRC), area under the PRC plot (AUC) and sensitivity and specificity. The accuracy of the tracking system was evaluated on the same unseen dataset and quantified by calculating mean absolute (±1 SD) and [1st, 99th] percentiles of the geometric tracking error in treatment beam co-ordinates using manual identification as the ground truth.Main results. The CNN had an AUC of 0.99, sensitivity of 98.31% and specificity of 99.87%. The mean absolute geometric tracking error was 0.30 ± 0.27 and 0.35 ± 0.31 mm in the lateral and superior-inferior directions of the MV images, respectively. The [1st, 99th] percentiles of the error were [-1.03, 0.90] and [-1.12, 1.12] mm in the lateral and SI directions, respectively.Significance. The high classification performance on unseen MV images demonstrates the CNN can successfully identify implanted prostate markers. Furthermore, the sub-millimetre accuracy and precision of the marker tracking system demonstrates potential for adaptation to real-time applications.
See less
Date
2023Source title
Physics in Medicine & BiologyVolume
68Issue
9Publisher
IOP SciencesFunding information
Cancer Australia 1081534
Cancer Council NSW
Licence
Creative Commons Attribution-NonCommercial 4.0Faculty/School
Faculty of Medicine and HealthDepartment, Discipline or Centre
Image X InstituteShare