Show simple item record

FieldValueLanguage
dc.contributor.authorRoberts, Lindon
dc.date.accessioned2025-04-08T07:16:09Z
dc.date.available2025-04-08T07:16:09Z
dc.date.issued2025en_AU
dc.identifier.urihttps://hdl.handle.net/2123/33803
dc.description.abstractWe develop a new approximation theory for linear and quadratic interpolation models, suitable for use in convex-constrained derivative-free optimization (DFO). Most existing model-based DFO methods for constrained problems assume the ability to construct sufficiently accurate approximations via interpolation, but the standard notions of accuracy (designed for unconstrained problems) may not be achievable by only sampling feasible points, and so may not give practical algorithms. In this work, we demonstrate that linear regression models and underdetermined quadratic interpolation models (in the minimum Frobenius sense) can be made sufficiently accurate (in a sense appropriate for convex-constrained problems) using only feasible points. For the underdetermined quadratic interpolation case, we provide a simple procedure for constructing such feasible interpolation sets, providing a theoretical basis for practical and strictly feasible methods for constrained DFO.en_AU
dc.language.isoenen_AU
dc.publisherSIAMen_AU
dc.relation.ispartofSIAM Journal on Optimizationen_AU
dc.subjectderivative-free optimisationen_AU
dc.subjectconvex constraintsen_AU
dc.subjectinterpolationen_AU
dc.titleModel Construction for Convex-Constrained Derivative-Free Optimizationen_AU
dc.typeArticleen_AU
dc.subject.asrcANZSRC FoR code::49 MATHEMATICAL SCIENCES::4903 Numerical and computational mathematics::490304 Optimisationen_AU
dc.identifier.doi10.1137/24M1649113
dc.type.pubtypeAuthor accepted manuscripten_AU
dc.relation.arcDE240100006
usyd.facultySeS faculties schools::Faculty of Science::School of Mathematics and Statisticsen_AU
usyd.citation.volume35en_AU
usyd.citation.issue2en_AU
usyd.citation.spage622en_AU
usyd.citation.epage650en_AU
workflow.metadata.onlyNoen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.