Show simple item record

FieldValueLanguage
dc.contributor.authorJi, Ang
dc.contributor.authorLevinson, David M.
dc.date.accessioned2022-01-10T04:26:43Z
dc.date.available2022-01-10T04:26:43Z
dc.date.issued2020en_AU
dc.identifier.urihttps://hdl.handle.net/2123/27304
dc.description.abstractHow crashes translate into physical injuries remains controversial. Previous studies recommended a predictor, Delta-V, to describe the crash consequences in terms of mass and impact speed of vehicles in crashes. This study adopts a new factor, energy loss-based vehicular injury severity (ELVIS), to explain the effects of the energy absorption of two vehicles in a collision. This calibrated variable, which is fitted with regression-based and machine learning models, is compared with the widely-used Delta-V predictor. A multivariate ordered logistic regression with multiple classes is then estimated. The results align with the observation that heavy vehicles are more likely to have inherent protection and rigid structures, especially in the side direction, and so suffer less impact.en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.relation.ispartofAccident Analysis & Preventionen_AU
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0en_AU
dc.subjectInjury severityen_AU
dc.subjectRegression modelen_AU
dc.subjectVehicle crashesen_AU
dc.subjectEnergy absorptionen_AU
dc.titleAn energy loss-based vehicular injury severity modelen_AU
dc.typeArticleen_AU
dc.subject.asrc0905 Civil Engineeringen_AU
dc.subject.asrc1507 Transportation and Freight Servicesen_AU
dc.identifier.doi10.1016/j.aap.2020.105730
dc.type.pubtypeAuthor accepted manuscripten_AU
usyd.facultySeS faculties schools::Faculty of Engineering::School of Civil Engineeringen_AU
usyd.departmentTransportLaben_AU
usyd.citation.volume146en_AU
usyd.citation.issue105730en_AU
workflow.metadata.onlyNoen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.