An energy loss-based vehicular injury severity model
Access status:
Open Access
Type
ArticleAbstract
How crashes translate into physical injuries remains controversial. Previous studies recommended a predictor, Delta-V, to describe the crash consequences in terms of mass and impact speed of vehicles in crashes. This study adopts a new factor, energy loss-based vehicular injury ...
See moreHow crashes translate into physical injuries remains controversial. Previous studies recommended a predictor, Delta-V, to describe the crash consequences in terms of mass and impact speed of vehicles in crashes. This study adopts a new factor, energy loss-based vehicular injury severity (ELVIS), to explain the effects of the energy absorption of two vehicles in a collision. This calibrated variable, which is fitted with regression-based and machine learning models, is compared with the widely-used Delta-V predictor. A multivariate ordered logistic regression with multiple classes is then estimated. The results align with the observation that heavy vehicles are more likely to have inherent protection and rigid structures, especially in the side direction, and so suffer less impact.
See less
See moreHow crashes translate into physical injuries remains controversial. Previous studies recommended a predictor, Delta-V, to describe the crash consequences in terms of mass and impact speed of vehicles in crashes. This study adopts a new factor, energy loss-based vehicular injury severity (ELVIS), to explain the effects of the energy absorption of two vehicles in a collision. This calibrated variable, which is fitted with regression-based and machine learning models, is compared with the widely-used Delta-V predictor. A multivariate ordered logistic regression with multiple classes is then estimated. The results align with the observation that heavy vehicles are more likely to have inherent protection and rigid structures, especially in the side direction, and so suffer less impact.
See less
Date
2020Source title
Accident Analysis & PreventionVolume
146Issue
105730Publisher
ElsevierLicence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0Faculty/School
Faculty of Engineering, School of Civil EngineeringDepartment, Discipline or Centre
TransportLabShare