Show simple item record

FieldValueLanguage
dc.contributor.authorFeng, Zeyu
dc.date.accessioned2021-11-11T22:24:08Z
dc.date.available2021-11-11T22:24:08Z
dc.date.issued2021en_AU
dc.identifier.urihttps://hdl.handle.net/2123/26876
dc.description.abstractSelf-supervised learning (SSL) aims at extracting from abundant unlabelled images transferable semantic features, which benefit various downstream visual tasks by reducing the sample complexity when human annotated labels are scarce. SSL is promising because it also boosts performance in diverse tasks when combined with the knowledge of existing techniques. Therefore, it is important and meaningful to study how SSL leads to better transferability and design novel SSL methods. To this end, this thesis proposes several methods to improve SSL and its function in downstream tasks. We begin by investigating the effect of unlabelled training data, and introduce an information-theoretical constraint for SSL from multiple related domains. In contrast to conventional single dataset, exploiting multi-domains has the benefits of decreasing the build-in bias of individual domain and allowing knowledge transfer across domains. Thus, the learned representation is more unbiased and transferable. Next, we describe a feature decoupling (FD) framework that incorporates invariance into predicting transformations, one main category of SSL methods, by observing that they often lead to co-variant features unfavourable for transfer. Our model learns a split representation that contains both transformation related and unrelated parts. FD achieves SOTA results on SSL benchmarks. We also present a multi-task method with theoretical understanding for contrastive learning, the other main category of SSL, by leveraging the semantic information from synthetic images to facilitate the learning of class-related semantics. Finally, we explore self-supervision in open-set unsupervised classification with the knowledge of source domain. We propose to enforce consistency under transformation of target data and discover pseudo-labels from confident predictions. Experimental results outperform SOTA open-set domain adaptation methods.en_AU
dc.language.isoenen_AU
dc.subjectunsuperviseden_AU
dc.subjectself-superviseden_AU
dc.subjectcontrastiveen_AU
dc.subjectlearningen_AU
dc.subjectdomainen_AU
dc.subjecttransferen_AU
dc.titleLearning Deep Representations from Unlabelled Data for Visual Recognitionen_AU
dc.typeThesis
dc.type.thesisDoctor of Philosophyen_AU
dc.rights.otherThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
usyd.facultySeS faculties schools::Faculty of Engineering::School of Computer Scienceen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU
usyd.advisorTao, Dacheng


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.