Show simple item record

FieldValueLanguage
dc.contributor.authorTobias, P.A.en_AU
dc.contributor.authorSchwessinger, B.en_AU
dc.contributor.authorDeng, C.H.en_AU
dc.contributor.authorWu, C.en_AU
dc.contributor.authorDong, C.en_AU
dc.contributor.authorSperschneider, J.en_AU
dc.contributor.authorJones, A.en_AU
dc.contributor.authorLou, Z.en_AU
dc.contributor.authorZhang, P.en_AU
dc.contributor.authorSandhu, K.en_AU
dc.contributor.authorSmith, G.R.en_AU
dc.contributor.authorTibbits, J.en_AU
dc.contributor.authorChagn�, D.en_AU
dc.contributor.authorPark, R.F.en_AU
dc.date.accessioned2021-06-10T02:32:33Z
dc.date.available2021-06-10T02:32:33Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/2123/25404
dc.description.abstractAustropuccinia psidii, originating in South America, is a globally invasive fungal plant pathogen that causes rust disease on Myrtaceae. Several biotypes are recognized, with the most widely distributed pandemic biotype spreading throughout the Asia-Pacific and Oceania regions over the last decade. Austropuccinia psidii has a broad host range with more than 480 myrtaceous species. Since first detected in Australia in 2010, the pathogen has caused the near extinction of at least three species and negatively affected commercial production of several Myrtaceae. To enable molecular and evolutionary studies into A. psidii pathogenicity, we assembled a highly contiguous genome for the pandemic biotype. With an estimated haploid genome size of just over 1?Gb (gigabases), it is the largest assembled fungal genome to date. The genome has undergone massive expansion via distinct transposable element (TE) bursts. Over 90% of the genome is covered by TEs predominantly belonging to the Gypsy superfamily. These TE bursts have likely been followed by deamination events of methylated cytosines to silence the repetitive elements. This in turn led to the depletion of CpG sites in TEs and a very low overall GC content of 33.8%. Compared to other Pucciniales, the intergenic distances are increased by an order of magnitude indicating a general insertion of TEs between genes. Overall, we show how TEs shaped the genome evolution of A. psidii and provide a greatly needed resource for strategic approaches to combat disease spread.en_AU
dc.language.isoenen_AU
dc.subjectCOVID-19en_AU
dc.subjectCoronavirusen_AU
dc.titleAustropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elementsen_AU
dc.typeArticleen_AU
dc.identifier.doi10.1093/g3journal/jkaa015


Show simple item record

Associated file/s

There are no files associated with this item.

Associated collections

Show simple item record

There are no previous versions of the item available.