Show simple item record

FieldValueLanguage
dc.contributor.authorDu, Yuxuan
dc.date.accessioned2021-04-26T01:48:11Z
dc.date.available2021-04-26T01:48:11Z
dc.date.issued2021en_AU
dc.identifier.urihttps://hdl.handle.net/2123/24976
dc.description.abstractMachine learning (ML) has revolutionized the world in recent years. Despite the success, the huge computational overhead required by ML models makes them approach the limits of Moore’s law. Quantum machine learning (QML) is a promising way to conquer this issue, empowered by Google's demonstration of quantum computational supremacy. Meanwhile, another cornerstone in QML is validating that quantum neural networks (QNNs) implemented on the noisy intermediate-scale quantum (NISQ) chips can accomplish classification and image generation tasks. Despite the experimental progress, little is known about the theoretical advances of QNNs. In this thesis, we explore the power of QNNs to fill this knowledge gap. First, we consider the potential advantages of QNNs in generative learning. We demonstrate that QNNs possess a stronger expressive power than that of classical neural networks in the measure of computational complexity and entanglement entropy. Moreover, we employ QNNs to tackle synthetic generation tasks with state-of-the-art performance. Next, we propose a Grover-search based quantum classifier, which can tackle specific classification tasks with quadratic runtime speedups. Furthermore, we exhibit that the proposed scheme allows batch gradient descent optimization, which is different from previous studies. This property is crucial to train large-scale datasets. Then, we study the capabilities and limitations of QNNs in the view of optimization theory and learning theory. The achieved results imply that a large system noise can destroy the trainability of QNNs. Meanwhile, we show that QNNs can tackle parity learning and juntas learning with provable advantages. Last, we devise a quantum auto-ML scheme to enhance the trainability QNNs under the NISQ setting. The achieved results indicate that our proposal effectively mitigates system noise and alleviates barren plateaus for both conventional machine learning and quantum chemistry tasks.en_AU
dc.language.isoenen_AU
dc.subjectmachine learningen_AU
dc.subjectquantum computingen_AU
dc.subjectquantum machine learningen_AU
dc.titleThe Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Eraen_AU
dc.typeThesis
dc.type.thesisDoctor of Philosophyen_AU
dc.rights.otherThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
usyd.facultySeS faculties schools::Faculty of Engineering::School of Computer Scienceen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU
usyd.advisorTao, Dacheng


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.