Supervised and Unsupervised Deep Learning-based Biomedical Image Segmentation
Access status:
USyd Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Liu, DongnanAbstract
Biomedical image analysis plays a crucial role in the development of healthcare, with a wide scope of applications including the disease diagnosis, clinical treatment, and future prognosis. Among various biomedical image analysis techniques, segmentation is an essential step, which ...
See moreBiomedical image analysis plays a crucial role in the development of healthcare, with a wide scope of applications including the disease diagnosis, clinical treatment, and future prognosis. Among various biomedical image analysis techniques, segmentation is an essential step, which aims at assigning each pixel with labels of interest on the category and instance. At the early stage, the segmentation results were obtained via manual annotation, which is time-consuming and error-prone. Over the past few decades, hand-craft feature based methods have been proposed to segment the biomedical images automatically. However, these methods heavily rely on prior knowledge, which limits their generalization ability on various biomedical images. With the recent advance of the deep learning technique, convolutional neural network (CNN) based methods have achieved state-of-the-art performance on various nature and biomedical image segmentation tasks. The great success of the CNN based segmentation methods results from the ability to learn contextual and local information from the high dimensional feature space. However, the biomedical image segmentation tasks are particularly challenging, due to the complicated background components, the high variability of object appearances, numerous overlapping objects, and ambiguous object boundaries. To this end, it is necessary to establish automated deep learning-based segmentation paradigms, which are capable of processing the complicated semantic and morphological relationships in various biomedical images. In this thesis, we propose novel deep learning-based methods for fully supervised and unsupervised biomedical image segmentation tasks. For the first part of the thesis, we introduce fully supervised deep learning-based segmentation methods on various biomedical image analysis scenarios. First, we design a panoptic structure paradigm for nuclei instance segmentation in the histopathology images, and cell instance segmentation in the fluorescence microscopy images. Traditional proposal-based and proposal-free instance segmentation methods are only capable to leverage either global contextual or local instance information. However, our panoptic paradigm integrates both of them and therefore achieves better performance. Second, we propose a multi-level feature fusion architecture for semantic neuron membrane segmentation in the electron microscopy (EM) images. Third, we propose a 3D anisotropic paradigm for brain tumor segmentation in magnetic resonance images, which enlarges the model receptive field while maintaining the memory efficiency. Although our fully supervised methods achieve competitive performance on several biomedical image segmentation tasks, they heavily rely on the annotations of the training images. However, labeling pixel-level segmentation ground truth for biomedical images is expensive and labor-intensive. Subsequently, exploring unsupervised segmentation methods without accessing annotations is an important topic for biomedical image analysis. In the second part of the thesis, we focus on the unsupervised biomedical image segmentation methods. First, we proposed a panoptic feature alignment paradigm for unsupervised nuclei instance segmentation in the histopathology images, and mitochondria instance segmentation in EM images. To the best of our knowledge, we are for the first time to design an unsupervised deep learning-based method for various biomedical image instance segmentation tasks. Second, we design a feature disentanglement architecture for unsupervised object recognition. In addition to the unsupervised instance segmentation for the biomedical images, our method also achieves state-of-the-art performance on the unsupervised object detection for natural images, which further demonstrates its effectiveness and high generalization ability.
See less
See moreBiomedical image analysis plays a crucial role in the development of healthcare, with a wide scope of applications including the disease diagnosis, clinical treatment, and future prognosis. Among various biomedical image analysis techniques, segmentation is an essential step, which aims at assigning each pixel with labels of interest on the category and instance. At the early stage, the segmentation results were obtained via manual annotation, which is time-consuming and error-prone. Over the past few decades, hand-craft feature based methods have been proposed to segment the biomedical images automatically. However, these methods heavily rely on prior knowledge, which limits their generalization ability on various biomedical images. With the recent advance of the deep learning technique, convolutional neural network (CNN) based methods have achieved state-of-the-art performance on various nature and biomedical image segmentation tasks. The great success of the CNN based segmentation methods results from the ability to learn contextual and local information from the high dimensional feature space. However, the biomedical image segmentation tasks are particularly challenging, due to the complicated background components, the high variability of object appearances, numerous overlapping objects, and ambiguous object boundaries. To this end, it is necessary to establish automated deep learning-based segmentation paradigms, which are capable of processing the complicated semantic and morphological relationships in various biomedical images. In this thesis, we propose novel deep learning-based methods for fully supervised and unsupervised biomedical image segmentation tasks. For the first part of the thesis, we introduce fully supervised deep learning-based segmentation methods on various biomedical image analysis scenarios. First, we design a panoptic structure paradigm for nuclei instance segmentation in the histopathology images, and cell instance segmentation in the fluorescence microscopy images. Traditional proposal-based and proposal-free instance segmentation methods are only capable to leverage either global contextual or local instance information. However, our panoptic paradigm integrates both of them and therefore achieves better performance. Second, we propose a multi-level feature fusion architecture for semantic neuron membrane segmentation in the electron microscopy (EM) images. Third, we propose a 3D anisotropic paradigm for brain tumor segmentation in magnetic resonance images, which enlarges the model receptive field while maintaining the memory efficiency. Although our fully supervised methods achieve competitive performance on several biomedical image segmentation tasks, they heavily rely on the annotations of the training images. However, labeling pixel-level segmentation ground truth for biomedical images is expensive and labor-intensive. Subsequently, exploring unsupervised segmentation methods without accessing annotations is an important topic for biomedical image analysis. In the second part of the thesis, we focus on the unsupervised biomedical image segmentation methods. First, we proposed a panoptic feature alignment paradigm for unsupervised nuclei instance segmentation in the histopathology images, and mitochondria instance segmentation in EM images. To the best of our knowledge, we are for the first time to design an unsupervised deep learning-based method for various biomedical image instance segmentation tasks. Second, we design a feature disentanglement architecture for unsupervised object recognition. In addition to the unsupervised instance segmentation for the biomedical images, our method also achieves state-of-the-art performance on the unsupervised object detection for natural images, which further demonstrates its effectiveness and high generalization ability.
See less
Date
2021Rights statement
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering, School of Computer ScienceAwarding institution
The University of SydneyShare