Show simple item record

FieldValueLanguage
dc.contributor.authorMarschner, I. C.en_AU
dc.date.accessioned2020-07-09
dc.date.available2020-07-09
dc.date.issued2020en_AU
dc.identifier.urihttps://hdl.handle.net/2123/22782
dc.description.abstractBack-projection is an epidemiological analysis method that was developed to estimate HIV incidence using surveillance data on AIDS diagnoses. It was used extensively during the 1990s for this purpose as well as in other epidemiological contexts. Surveillance data on COVID-19 diagnoses can be analysed by the method of back-projection using information about the probability distribution of the time between infection and diagnosis, which is primarily determined by the incubation period. This paper demonstrates the value of such analyses using daily diagnoses from Australia. It is shown how back-projection can be used to assess the pattern of COVID-19 infection incidence over time and to assess the impact of control measures by investigating their temporal association with changes in incidence patterns. For Australia, these analyses reveal that peak infection incidence coincided with the introduction of border closures and social distancing restrictions, while the introduction of subsequent social distancing measures coincided with a continuing decline in incidence to very low levels. These associations were not directly discernible from the daily diagnosis counts, which continued to increase after the first stage of control measures. It is estimated that a one week delay in peak incidence would have led to a fivefold increase in total infections. Furthermore, at the height of the outbreak, half to three-quarters of all infections remained undiagnosed. Automated data analytics of routinely collected surveillance data are a valuable monitoring tool for the COVID-19 pandemic and may be useful for calibrating transmission dynamics models.en_AU
dc.language.isoenen_AU
dc.subjectCOVID-19en_AU
dc.subjectCoronavirusen_AU
dc.titleBack-projection of COVID-19 diagnosis counts to assess infection incidence and control measures: analysis of Australian dataen_AU
dc.typeArticleen_AU
dc.identifier.doi10.17061/phrp3022009


Show simple item record

Associated file/s

There are no files associated with this item.

Associated collections

Show simple item record

There are no previous versions of the item available.