Show simple item record

FieldValueLanguage
dc.contributor.authorKerschl, Alexander
dc.date.accessioned2019-07-03
dc.date.available2019-07-03
dc.date.issued2019-03-31
dc.identifier.urihttp://hdl.handle.net/2123/20683
dc.description.abstractAriki showed that the simple modules of the cyclotomic Hecke algebra are labelled by Kleshchev multipartitions. Recently, Jacon gave an alternative recursive description of Uglov multipartitions, which can be thought of as a generalisation of Kleshchev multipartitions. In this thesis we extend Jacon's combinatorics and then give a non-recursive description of Kleshchev multipartitions. We then use these combinatorial tools in the framework of the diagramatic Cherednik algebras to give a complete classification of the simple modules coming from the Webster-Bowman "many cellular bases" indexed by a loading. In particular, we recover Ariki's classification theorem in the case of Kleshchev multipartitions. As a consequence we also obtain a new lower bound for the graded dimensions of the simple modules.en_AU
dc.rightsThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
dc.titleSimple modules of cyclotomic Hecke algebrasen_AU
dc.typeThesisen_AU
dc.type.thesisDoctor of Philosophyen_AU
usyd.facultyFaculty of Science, School of Mathematics and Statisticsen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.