Quantifying the accuracy and precision of a novel real-time 6 degree-of-freedom kilovoltage intrafraction monitoring (KIM) target tracking system.
Access status:
Open Access
Type
ArticleAuthor/s
Kim, JHNguyen, DT
Huang, CY
Fuangrod, T
Caillet, V
O'Brien, R
Poulsen, P
Booth, J
Keall, P
Abstract
Target rotation can considerably impact the delivered radiotherapy dose depending on the tumour shape. More accurate tumour pose during radiotherapy treatment can be acquired through tracking in 6 degrees-of-freedom (6 DoF) rather than in translation only. A novel real-time 6 DoF ...
See moreTarget rotation can considerably impact the delivered radiotherapy dose depending on the tumour shape. More accurate tumour pose during radiotherapy treatment can be acquired through tracking in 6 degrees-of-freedom (6 DoF) rather than in translation only. A novel real-time 6 DoF kilovoltage intrafraction monitoring (KIM) target tracking system has recently been developed. In this study, we experimentally evaluated the accuracy and precision of the 6 DoF KIM implementation. Real-time 6 DoF KIM motion measurements were compared against the ground truth motion retrospectively derived from kV/MV triangulation for a range of lung and prostate tumour motion trajectories as well as for various static poses using a phantom. The accuracy and precision of 6 DoF KIM were calculated as the mean and standard deviation of the differences between KIM and kV/MV triangulation for each DoF, respectively. We found that KIM is able to provide 6 DoF motion with sub-degree and sub-millimetre accuracy and precision for a range of realistic tumour motion.
See less
See moreTarget rotation can considerably impact the delivered radiotherapy dose depending on the tumour shape. More accurate tumour pose during radiotherapy treatment can be acquired through tracking in 6 degrees-of-freedom (6 DoF) rather than in translation only. A novel real-time 6 DoF kilovoltage intrafraction monitoring (KIM) target tracking system has recently been developed. In this study, we experimentally evaluated the accuracy and precision of the 6 DoF KIM implementation. Real-time 6 DoF KIM motion measurements were compared against the ground truth motion retrospectively derived from kV/MV triangulation for a range of lung and prostate tumour motion trajectories as well as for various static poses using a phantom. The accuracy and precision of 6 DoF KIM were calculated as the mean and standard deviation of the differences between KIM and kV/MV triangulation for each DoF, respectively. We found that KIM is able to provide 6 DoF motion with sub-degree and sub-millimetre accuracy and precision for a range of realistic tumour motion.
See less
Date
2017-06-01Publisher
IOPscienceCitation
Phys Med Biol. 2017 Jun 23;62(14):5744-5759Share