Show simple item record

FieldValueLanguage
dc.contributor.authorHirukawa, Masayuki
dc.contributor.authorProkhorov, Artem
dc.date.accessioned2018-04-05
dc.date.available2018-04-05
dc.date.issued2017-03-16
dc.identifier.otherJEL Classi cation Codes: C13; C14; C31.
dc.identifier.urihttp://hdl.handle.net/2123/18063
dc.descriptionJEL Classi cation Codes: C13; C14; C31.en_AU
dc.description.abstractEconomists often use matched samples, especially when dealing with earnings data where a number of missing observations need to be imputed. In this paper, we demonstrate that the ordinary least squares estimator of the linear regression model using matched samples is inconsistent and has a nonstandard convergence rate to its probability limit. If only a few variables are used to impute the missing data, then it is possible to correct for the bias. We propose two semiparametric bias-corrected estimators and explore their asymptotic properties. The estimators have an indirect-inference interpretation and they attain the parametric convergence rate if the number of matching variables is no greater than three. Monte Carlo simulations confirm that the bias correction works very well in such cases.en_AU
dc.language.isoenen_AU
dc.relation.ispartofseriesBAWP-2018-02en_AU
dc.subjectBias correctionen_AU
dc.subjectindirect inferenceen_AU
dc.subjectlinear regressionen_AU
dc.subjectmatching estimationen_AU
dc.subjectmeasurement error biasen_AU
dc.titleConsistent Estimation of Linear Regression Models Using Matched Dataen_AU
dc.typeArticleen_AU
dc.type.pubtypePre-printen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.