Show simple item record

FieldValueLanguage
dc.contributor.authorNapier, Ian A.
dc.contributor.authorMohammadi, Sarasa A.
dc.contributor.authorChristie, MacDonald J.
dc.date.accessioned2016-06-22
dc.date.available2016-06-22
dc.date.issued2012-01-01
dc.identifier.citationNapier, I., Mohammadi, S., Christie, M. (2012). Glutamate transporter dysfunction associated with nerve injury-induced pain in mice. Journal of Neurophysiology, 107(2), 649-657.en_AU
dc.identifier.urihttp://hdl.handle.net/2123/15191
dc.description.abstractDysfunction at glutamatergic synapses has been proposed as a mechanism in the development of neuropathic pain. Here we sought to determine whether peripheral nerve injury-induced neuropathic pain results in functional changes to primary afferent synapses. Signs of neuropathic pain as well as an induction of glial fibrillary acidic protein in immunostained spinal cord sections 4 days after partial ligation of the sciatic nerve indicated the induction of neuropathic pain. We found that following nerve injury, no discernable change to kinetics of dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) or N-methyl-d-aspartate receptor (NMDAR)-mediated evoked excitatory postsynaptic currents (eEPSCs) could be observed in dorsal horn (lamina I/II) neurons compared with those of naïve mice. However, we did find that nerve injury was accompanied by slowed decay of the early phase of eEPSCs in the presence of glutamate transporter inhibition by the competitive nontransportable inhibitor dl-threo-β-benzyloxyaspartic acid (TBOA). Concomitantly, expression patterns for the two major glutamate transporters in the spinal cord, excitatory amino acid transporters (EAAT) 1 and EAAT2, were found to be reduced at this time (4 days postinjury). We then sought to directly determine whether nerve injury results in glutamate spillover to NMDARs at dorsal horn synapses. By employing the use-dependent NMDAR blocker (±)MK-801 to block subsynaptic receptors, we found that although TBOA-induced spillover to extrasynaptic receptors trended to increased activation of these receptors after nerve injury, this was not significant compared with naïve mice. Together, these results suggest the development of neuropathic pain involves subtle changes to glutamate transporter expression and function that could contribute to neuropathic pain during excessive synaptic activity.en_AU
dc.description.sponsorshipNHMRC grant: 0569927 & 351446en_AU
dc.language.isoen_AUen_AU
dc.publisherAmerican Physiological Societyen_AU
dc.titleGlutamate transporter dysfunction associated with nerve injury-induced pain in miceen_AU
dc.typeArticleen_AU
dc.identifier.doi10.1152/jn.00763.2011
dc.type.pubtypePost-printen_AU
usyd.departmentDiscipline of Pharmacologyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.