Show simple item record

FieldValueLanguage
dc.contributor.authorLi, Ge Jr
dc.date.accessioned2012-12-12
dc.date.available2012-12-12
dc.date.issued2012-12-12
dc.identifier.urihttp://hdl.handle.net/2123/8844
dc.description.abstractThe main purpose of this thesis is to prove that the cyclotomic Khovanov-Lauda-Rouquier algebras of type A over Z are free by giving a graded cellular basis of the cyclotomic KLR algebra. We then extend it to obtain a graded cellular basis of the affine KLR algebra, which indicates that the affine KLR algebra is an affine graded cellular algebra. Finally we work with the Jucys-Murphy elements of the cyclotomic Hecke algebras of type A and proved a periodic property of these elements.en_AU
dc.rightsThe author retains copyright of this thesis.
dc.subjectRepresentation theoryen_AU
dc.subjectKLR algebrasen_AU
dc.subjectHecke algebrasen_AU
dc.titleIntegral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type Aen_AU
dc.typeThesisen_AU
dc.date.valid2012-01-01en_AU
dc.type.thesisDoctor of Philosophyen_AU
usyd.facultyFaculty of Science, School of Mathematics and Statisticsen_AU
usyd.departmentPure Mathematicsen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.