Urban Robotic Interfaces: Designing for Encounters with Non-Humanoid Robots in Cities
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Hoggenmueller, MariusAbstract
The contemporary city is increasingly mediated by computing and automation, promising to improve the quality of urban life. Urban robots represent the next generation of urban technologies, which are capable of sensing, autonomously operating and physically manipulating the urban ...
See moreThe contemporary city is increasingly mediated by computing and automation, promising to improve the quality of urban life. Urban robots represent the next generation of urban technologies, which are capable of sensing, autonomously operating and physically manipulating the urban environment. However, while research in engineering led the foundation for the technological development of urban robots, their human-centred design, including the design of the interfaces to facilitate encounters and interactions between humans and urban robots, has been less explored. Furthermore, it remains an open question how to systematically prototype these complex technologies in urban environments. The research aim of this thesis is to advance the understanding of the design space of urban robotic interfaces. To achieve this aim, this publication-based thesis employs a research in and through design approach, using methods from human-computer interaction. To seek a deeper understanding of the opportunities and challenges of designing urban robotic interfaces, existing urban interfaces and new ones emerging out of the intrinsic characteristics of urban robots are reviewed and classified. This review lays the foundation for the two implemented case studies, which form the core part of this thesis: First, a slow-moving urban robot that draws with chalk on the ground was designed and deployed as an urban probe to explore the potential of physicalised displays, and to investigate social interactions around urban robots. For the second case study, we guided the design of a low-resolution lighting display for a fully functional shared autonomous vehicle. The case studies consist of two empirical studies each, which were conducted in the wild and in the lab, respectively. The findings that emerged from this research expand the design space of urban robotic interfaces and shed light on the challenges in prototyping by offering conceptual, empirical and methodological contributions.
See less
See moreThe contemporary city is increasingly mediated by computing and automation, promising to improve the quality of urban life. Urban robots represent the next generation of urban technologies, which are capable of sensing, autonomously operating and physically manipulating the urban environment. However, while research in engineering led the foundation for the technological development of urban robots, their human-centred design, including the design of the interfaces to facilitate encounters and interactions between humans and urban robots, has been less explored. Furthermore, it remains an open question how to systematically prototype these complex technologies in urban environments. The research aim of this thesis is to advance the understanding of the design space of urban robotic interfaces. To achieve this aim, this publication-based thesis employs a research in and through design approach, using methods from human-computer interaction. To seek a deeper understanding of the opportunities and challenges of designing urban robotic interfaces, existing urban interfaces and new ones emerging out of the intrinsic characteristics of urban robots are reviewed and classified. This review lays the foundation for the two implemented case studies, which form the core part of this thesis: First, a slow-moving urban robot that draws with chalk on the ground was designed and deployed as an urban probe to explore the potential of physicalised displays, and to investigate social interactions around urban robots. For the second case study, we guided the design of a low-resolution lighting display for a fully functional shared autonomous vehicle. The case studies consist of two empirical studies each, which were conducted in the wild and in the lab, respectively. The findings that emerged from this research expand the design space of urban robotic interfaces and shed light on the challenges in prototyping by offering conceptual, empirical and methodological contributions.
See less
Date
2022Rights statement
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Sydney School of Architecture, Design and PlanningDepartment, Discipline or Centre
Design LabAwarding institution
The University of SydneyShare