Show simple item record

dc.contributor.authorThickett, Stuart Craig Vincent
dc.date.accessioned2008-05-02T05:52:54Z
dc.date.available2008-05-02T05:52:54Z
dc.date.issued2008-08
dc.identifier.urihttp://hdl.handle.net/2123/2380
dc.descriptionDoctor of Philosophyen
dc.description.abstractThe kinetics of electrosterically stabilized emulsion systems was studied. The aim of this was to understand the impact that steric and electrosteric stabilizers have on the kinetics of particle growth and particle formation in the area of emulsion polymerization. The well-established mechanisms that govern these processes for emulsions stabilized by conventional low molecular weight surfactants were used as a reference point for comparative purposes. Model latexes were synthesized that comprised of a poly(styrene) core stabilized by a corona of poly(acrylic acid). The advent of successful controlled radical polymerization techniques in heterogeneous media (via RAFT polymerization) allowed for latexes to be synthesized under molecular weight control. For the first time, the degree of polymerization of the stabilizing block on the particle surface was able to be controlled and verified experimentally using mass spectrometry techniques. Three latexes were made with different average degrees of polymerization of the stabilizing block; five, ten and twenty monomer units respectively. A methodology was developed to remove the RAFT functionality from the polymer chains present in the emulsion while retaining the desired particle morphology. Oxidation with tertbutylhydroperoxide (TBHP) was proven to be successful at eliminating the living character provided by the thiocarbonyl end-group. Extensive dialysis and cleaning of the latex was performed to ensure no residual TBHP or reaction by-products remained. Latexes with poly(styrene) cores were chosen for this work as poly(n-butyl acrylate) latexes were shown to be influenced by chain transfer to polymer, providing an additional kinetic complication. The three electrosterically stabilized emulsions were used as seed latexes in carefully designed kinetic experiments to measure the rate of polymerization as a function of time. Two independent techniques (chemically initiated dilatometry and γ-relaxation dilatometry) were used to measure the rate coefficients of radical entry (ρ) and exit (k) in these systems – the two parameters that essentially govern the rate of particle growth. The latexes were chosen such that they satisfied ‘zero-one’ conditions (i.e. that any given latex particle contains at most one growing radical at any given time) in order to simplify data analysis. Three different chemical initiators were used, each yielding a radical with a different electric charge. Results from γ-relaxation experiments demonstrated that the three electrosterically stabilized latexes gave very long relaxation times when removed from the radiation source, ultimately yielding very small k values. These values were up to a factor of 10 smaller than that predicted by the ‘transfer-diffusion’ model for exit for particles of that size. This reduction was attributed to a ‘restricted diffusion’ effect, where the exiting monomeric radical has to diffuse through a dense layer of polymer on the particle surface, where its mobility will be restricted. Modification of the Smoluchowski equation for diffusion-controlled adsorption/desorption to account for this postulate led to the development of a model that gave excellent semi-quantitative agreement with experiment. Chemically initiated dilatometric experiments (using three different types of initiator) gave the unusual result of very low reaction rates and low steady-state values of 'nbar', the average number of radicals per particle. Using the standard kinetic equations for styrene-based systems (where it is assumed that an exited monomeric radical undergoes re-entry), this led to the calculation of impossibly small values of the entry rate coefficient ρ (far below any background or ‘thermal’polymerization rate). However upon removing the assumption of re-entry and assuming that exited radicals undergo termination, the obtained values of ρ were in almost perfect agreement with the values predicted from the ‘control by aqueous phase growth’ entry mechanism. This unexpected result was attributed to chemical reaction with the poly(acrylic acid) stabilizers through chain transfer to polymer (via hydrogen-atom abstraction). This postulate was verified by separate experiments that demonstrated that poly(acrylic acid) could act as a reasonably efficient chain transfer agent for styrene polymerization. The addition of poly(acrylic acid) to the aqueous phase of a conventionally stabilized emulsion also led to the rate reduction seen previously. NMR experiments demonstrated the existence of poly(acrylic acid-graft-styrene), which could only be formed through termination of a poly(styrene) chain with a poly(acrylic acid) chain bearing a mid-chain radical (as the product of a chain transfer reaction). These additional terms of transfer and termination were included in the governing kinetic equations of emulsion systems (the Smith-Ewart equations) to develop a model to account for the behaviour of electrosterically stabilized latexes. The ultimate fate of an exiting radical was now shown to be a competition between fates; successful desorption into the aqueous phase, or chemical reaction (through transfer or termination) within the hairy layer. These additional terms were shown to significantly reduce the theoretical value of nbar, and were in excellent agreement with experiment. For small electrosterically stabilized particles with a densely packed ‘hairy layer,’ it was seen that transfer/termination is the dominant loss mechanism as opposed to desorption. The developed model showed that as the particle size was increased, the dominant loss mechanism once again became successful desorption into the aqueous phase. The model was shown to give excellent agreement with experimental data from ‘uncontrolled’ emulsion systems. To explain the highly unusual secondary nucleation behaviour seen in systems such as these, it was postulated that beta-scission of a poly(acrylic acid) chain bearing a mid-chain radical is an important mechanistic step in the nucleation mechanisms of these systems. Modelling (both steady-state and time-dependent) gave good agreement with experiment with a minimal number of adjustable parameters. Theory (and supporting experimental evidence) demonstrated that this nucleation mechanism is only significant at high particle numbers; under other conditions the well-known ‘homogeneous nucleation’ mechanism is once again dominant.en
dc.publisherUniversity of Sydneyen_AU
dc.publisherSchool of Chemistryen_AU
dc.rightsThe author retains copyright of this thesis.
dc.rights.urihttp://www.library.usyd.edu.au/copyright.html
dc.subjectemulsion polymerizationen
dc.subjectkineticsen
dc.subjectelectrosteric stabilizationen
dc.subjectstyreneen
dc.subjectpoly(acrylic acid)en
dc.subjectpolymer chemistryen
dc.subjectpolymerization mechanismsen
dc.titleThe Kinetics of Electrosterically Stabilized Emulsion Polymerization Systemsen
dc.typePhD Doctorateen
dc.date.valid2008en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record