UniversityLibraryCurrent studentsStaff intranet
University of Sydney
University of Sydney
View Item 
  • Sydney eScholarship Home
  • Postgraduate Theses
  • Sydney Digital Theses (Open Access)
  • View Item
  • Sydney eScholarship Home
  • Postgraduate Theses
  • Sydney Digital Theses (Open Access)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fundamental and Systematic Investigation into the Solid State Chemistry of Some Ternary Uranium Oxides

Thumbnail
View/Open
Thesis (PDF, 77.35MB)
Date
2018-10-24
Author
Murphy, Gabriel L.
Metadata
Show full item record
Abstract
This Ph.D. dissertation explores the solid state chemistry of the AUO4 family of oxides (A = divalent or trivalent cation), addressing the role uranyl bonding and 5f electron chemistry play in influencing their physicochemical properties using high resolution measurement methods and ab initio calculations. The irreversible phase transformation that occurs between the rhombohedral and orthorhombic variants of SrUO4 is examined and demonstrated to be first order and reconstructive. The transformation is shown to involve a sequential reduction and oxidation process related to reducing the activation energy barrier that can be traced to the respective ability and inability for the rhombohedral and orthorhombic variants to host oxygen defects. The defect inventory in AUO4 rhombohedral structures is shown to be modulated by the size of the A site cation. When isostructural rhombohedral CaUO4, α-Sr0.4Ca0.6UO4 and SrUO4 obtain a critical amount of oxygen defects they can access novel reversible symmetry lowering and defect ordering transformations forming phases denoted δ. The transformations are purely thermodynamic where the origin is proposed to be related to decreasing entropy from defect ordering balanced by increasing electronic entropy with heating. AUO4 oxides that had been previously poorly described were examined at high resolution. This includes elucidation of NiUO4 polymorphs which provide the transformative “missing link" between the Pbcn and Ibmm orthorhombic variants. Consequently a structural hierarchy is developed for the family of AUO4 oxides that can be used for structure prediction for specific A and U cations. High pressure studies of SrUO4 found anomalous U-O bond lengthening to occur with increasing pressure related to electron delocalisation. This demonstrates the inapplicability of Badger’s rule to all uranyl bearing compounds. With the structural topology of rhombohedral SrUO4, this lengthening process produces bulk moduli comparable to diamond
URI
http://hdl.handle.net/2123/20323
Collections
  • Sydney Digital Theses (Open Access) [4724]

Browse

All of Sydney eScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Links

University homeLibraryCurrent studentsStaff intranet

Repository

  • About us
  • FAQ
  • Policies & guidelines
  • Email us
  • Non-UniKey login
Leadership for good starts here

Media

  • News
  • Find an expert
  • Media contacts

Student links

  • Log in to University systems
  • Study dates
  • Student handbooks
  • Timetables
  • Library

About us

  • Our world rankings
  • Faculties and schools
  • Centres and institutes
  • Campus locations
  • Maps and locations

Connect

  • Contact us
  • Find a staff member
  • Careers at Sydney
  • Events
  • Emergencies and personal safety
Inspired: Campaign to support the University of SydneyGroup of Eight
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A